Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thánh cao su

Cho 3 số thực dương a;b;c. Chứng minh:

\(\dfrac{a^2+bc}{b+c}+\dfrac{b^2+ca}{c+a}+\dfrac{c^2+ab}{a+b}\ge a+b+c\)

Akai Haruma
8 tháng 12 2017 lúc 23:26

Lời giải:

\(\frac{a^2+bc}{b+c}+\frac{b^2+ac}{c+a}+\frac{c^2+ab}{a+b}\geq a+b+c\)

\(\Leftrightarrow \frac{a^2+bc}{b+c}-c+\frac{b^2+ac}{a+c}-a+\frac{c^2+ab}{a+b}-b\geq 0\)

\(\Leftrightarrow \frac{a^2-c^2}{b+c}+\frac{b^2-a^2}{a+c}+\frac{c^2-b^2}{a+b}\geq 0\)

\(\Leftrightarrow a^2\left(\frac{1}{b+c}-\frac{1}{a+c}\right)+b^2\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+c^2\left(\frac{1}{a+b}-\frac{1}{b+c}\right)\geq 0\)

\(\Leftrightarrow \frac{a^2(a-b)(a+b)+b^2(b-c)(b+c)+c^2(c-a)(c+a)}{(a+b)(b+c)(c+a)}\geq 0\)

\(\Leftrightarrow a^2(a^2-b^2)+b^2(b^2-c^2)+c^2(c^2-a^2)\geq 0\)

\(\Leftrightarrow a^4+b^4+c^4-(a^2b^2+b^2c^2+c^2a^2)\geq 0\)

\(\Leftrightarrow \frac{(a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2}{2}\geq 0\) (luôn đúng)

Do đó ta có đpcm

Dấu bằng xảy ra khi $a=b=c$


Các câu hỏi tương tự
Thánh cao su
Xem chi tiết
Lê Đăng Phú Quý
Xem chi tiết
Thánh cao su
Xem chi tiết
Bong Bóng Công Chúa
Xem chi tiết
Lê Thành Nam
Xem chi tiết
Lil Shroud
Xem chi tiết
Phạm Đức Minh
Xem chi tiết
Thánh cao su
Xem chi tiết
Trần Hoàng Đạt
Xem chi tiết