Cho a.b,c là số hữu tỉ t/m abc=1 và \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\).
C/m ít nhẩ một trong 3 số a,b,c là bình phương của một số hữu tỉ.
cho 1 số hữu tỉ khác 1 thỏa mãn \(\dfrac{1-2x}{1-x}+\dfrac{1-2y}{1-y}=1\)
CM x^2+y^2-xy là bình phương của 1 số hữu tỉ
Cho x, y, z là các số hữu tỉ khác 0 thoả mãn x+y=z
Cmr: \(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\) là một số hữu tỉ.
Cho x, y, z là các số hữu tỉ thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{z}\)
Chứng minh rằng \(\sqrt{x^2+y^2+z^2}\) là số hữu tỉ
Các idol dô đây lẹ
Cho x;y;z đôi 1 khác nhau CM: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}\) là bình phương 1 số hữu tỉ
Cho 3 số hữu tỉ a, b, c thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\). CM: \(A=\sqrt{a^2+b^2+c^2}\) là số hữu tỉ
Cho \(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}\) là 1 nghiệm của phương trình: \(ax^2+bx+1\). Với a, b là các số hữu tỉ. Tìm a và b
Cho a,b,c là ba số hữu tỉ thỏa mãn abc=1 và \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\)
Chứng minh rằng ít nhất một trong ba số a,b,c là bình phương của một số hữu tỉ
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn điều kiện a=b+c
Chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ