Cho x, y, z là các số hữu tỉ khác 0 thoả mãn x+y=z
Cmr: \(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}}\) là một số hữu tỉ.
Cho x, y, z là các số hữu tỉ thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{z}\)
Chứng minh rằng \(\sqrt{x^2+y^2+z^2}\) là số hữu tỉ
Các idol dô đây lẹ
Cho 3 số hữu tỉ a, b, c thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{c}\). CM: \(A=\sqrt{a^2+b^2+c^2}\) là số hữu tỉ
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn điều kiện a=b+c
Chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Cho 3 số hữu tỉ \(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{x-y}\).CMR: tổng bình phương của 3 số đã cho là bình phương số hữu tỉ
Cho x;y;z đôi 1 khác nhau CM: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}\) là bình phương 1 số hữu tỉ
Cho x,y ∈Q, x,y khác 0 thỏa mãn x3+y3=2x2y2
Chứng minh rầng :A=\(\sqrt{1-\dfrac{1}{xy}}\) là số hữu tỉ
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho các số thực x, y dương thỏa mãn x + \(\dfrac{1}{y}\) \(\le\) 1; Tìm giá trị nhỏ nhất của biểu thức:
P = \(\dfrac{x^2-2xy+2y^2}{x^2+xy}\)