Chương II - Hàm số bậc nhất

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thu Thủy

Cho 3 số dương a,b,c. CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)

Ngô Thanh Sang
8 tháng 7 2017 lúc 17:03

Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\) ta được

\(\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{2b}\ge\dfrac{9}{2\left(a+2b\right)}\)

\(\dfrac{1}{2b}+\dfrac{1}{2c}+\dfrac{1}{2c}\ge\dfrac{9}{2\left(b+2c\right)}\)

\(\dfrac{1}{2c}+\dfrac{1}{2a}+\dfrac{1}{2a}\ge\dfrac{9}{2\left(c+2a\right)}\)

Cộng các BĐT theo vế

\(\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{9}{2}\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\)

Dấu " = " xảy ra khi a = b = c ( a,b,c > 0 )


Các câu hỏi tương tự
Vũ Anh Quân
Xem chi tiết
Nguyễn Văn Anh Kiệt
Xem chi tiết
Ngoc An Pham
Xem chi tiết
Trần Hoàng Phước
Xem chi tiết
Việt Hồ Trần
Xem chi tiết
Ctuu
Xem chi tiết
Ngô Nhất Khánh
Xem chi tiết
Việt Hồ Trần
Xem chi tiết
Trần Phương Thảo
Xem chi tiết