\(\text{∃}k\ne0:\overrightarrow{AB}=k\overrightarrow{AC}\)
Vì với \(\overrightarrow{AB}=k\overrightarrow{AC\text{ }}\left(\text{∃}k\ne0\right)\) thì \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) luôn cùng phương
=> Chọn B
\(\text{∃}k\ne0:\overrightarrow{AB}=k\overrightarrow{AC}\)
Vì với \(\overrightarrow{AB}=k\overrightarrow{AC\text{ }}\left(\text{∃}k\ne0\right)\) thì \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) luôn cùng phương
=> Chọn B
Cho hcn ABCD có AB = 2AD, BC = a. Tính Min của độ dài vec tơ \(\overrightarrow{u}=\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\), trong đó M là điểm thay đổi trên đường thẳng BC
cho tam giác ABC, M là trung điểm của AB, D là trung điểm của BC. Điểm N thuộc AC sao cho \(\overrightarrow{CN}=2\overrightarrow{NA}\). K là trung điểm của MN. Phân tích \(\overrightarrow{AK}\) và \(\overrightarrow{KD}\) theo hai vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
Cho tam giác ABC có tâm đường tròn nội tiếp I, các đường cao của tam giác là \(h_a,h_b,h_c\).
a) Tìm tập hợp những điểm M thỏa mãn \(\left(\overrightarrow{MA}+2\overrightarrow{MC}\right)\left(2\overrightarrow{MB}-\overrightarrow{MA}\right)=0\)
b) Điểm K thỏa mãn \(\dfrac{\overrightarrow{KA}}{h_a}+\dfrac{\overrightarrow{KB}}{h_b}+\dfrac{\overrightarrow{KC}}{h_c}=\overrightarrow{IA}\). Chứng minh rằng : K, I, A thẳng hàng.
Cho tam giác ABC đều cạnh a nội tiếp đường tròn (O; R). Tìm tập hợp các điểm M thỏa mãn \(\overrightarrow{MA}.\overrightarrow{MB}+\overrightarrow{MB}.\overrightarrow{MC}+\overrightarrow{MC}.\overrightarrow{MA}=3a^2\)
Cho △ABC gọi I là điểm trên cạnh BC sao cho độ dài CI =\(\dfrac{3}{2}\)BI và J ∈ BC kéo dài sao cho độ dài JB =\(\dfrac{2}{5}\)JC
a. Phân tích \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\) theo 2 véctơ \(\overrightarrow{AB}\), \(\overrightarrow{AC}\). Từ đó phân tích AB, AC theo AI. AJ
b. G là trọng tâm △ABC, phân tích \(\overrightarrow{AG}\) theo các véctơ \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\)
cho \(\Delta ABC,E\) là điểm thỏa mãn \(4\overrightarrow{EA}+2\overrightarrow{EB}+3\overrightarrow{EC}=\overrightarrow{0}\) ,F thuộc AC sao cho \(\overrightarrow{AF}=k\overrightarrow{AC}\) biết B,E,F thằng hàng.k=?
Cho tam giác ABC nội tiếp (O ; R). Gọi E là trung điểm của AB và F là điểm thỏa mãn \(\overrightarrow{AC}=3\overrightarrow{AF}\). Vẽ hình bình hành AEMF. Biểu diễn giá trị nhỏ nhất của P theo R
P = (MA + MB + MC)2 + 11OM2
Cho tam giác ABC vông tại A, I là trung điểm của đường cao AH. CMR: \(BC^2.\overrightarrow{IA}+AC^2.\overrightarrow{IB}+AB^2.\overrightarrow{IC}=\overrightarrow{0}\).
cho hình bình hành ABCD có M, N lần lượt là trung điểm của DC và DA. phân tích các vecto \(\overrightarrow{AB},\overrightarrow{DA},\overrightarrow{BC},\overrightarrow{BD}\) theo 2 vecto \(\overrightarrow{a},\overrightarrow{b}\) với \(\left\{{}\begin{matrix}\overrightarrow{a}=\overrightarrow{AM}\\\overrightarrow{b}=\overrightarrow{BN}\end{matrix}\right.\)
cmr : nếu G là trọng tâm của tam giác ABC thì vs mọi điểm M ta có \(\overrightarrow{MA}\) + \(\overrightarrow{MB}\) + \(\overrightarrow{MC}\) = 3\(\overrightarrow{MG}\)
GIÚP MK VS Ạ !!!