Ôn tập cuối năm môn Hình học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Anh

Cho △ABC gọi I là điểm trên cạnh BC sao cho độ dài CI =\(\dfrac{3}{2}\)BI và J ∈ BC kéo dài sao cho độ dài JB =\(\dfrac{2}{5}\)JC 

a. Phân tích \(\overrightarrow{AI}\)\(\overrightarrow{AJ}\) theo 2 véctơ \(\overrightarrow{AB}\)\(\overrightarrow{AC}\). Từ đó phân tích AB, AC theo AI. AJ

b. G là trọng tâm △ABC, phân tích \(\overrightarrow{AG}\) theo các véctơ  \(\overrightarrow{AI}\)\(\overrightarrow{AJ}\) 

Nguyễn Lê Phước Thịnh
19 tháng 11 2023 lúc 8:18

a: CI+BI=CB

=>\(\dfrac{3}{2}BI+BI=CB\)

=>\(\dfrac{5}{2}BI=CB\)

=>\(BI=\dfrac{2}{5}BC\)

=>\(CI=\dfrac{3}{2}\cdot BI=\dfrac{3}{2}\cdot\dfrac{2}{5}CB=\dfrac{3}{5}CB\)

\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}\)

\(=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\)

\(=\dfrac{3}{5}\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{AC}\)

JB=2/5JC mà J không nằm trong đoạn thẳng BC

nên B nằm giữa J và C

=>JB+BC=JC

=>\(BC+\dfrac{2}{5}JC=JC\)

=>\(BC=\dfrac{3}{5}JC\)

\(\dfrac{JB}{BC}=\dfrac{\dfrac{2}{5}JC}{\dfrac{3}{5}JC}=\dfrac{2}{5}:\dfrac{3}{5}=\dfrac{2}{3}\)

=>\(JB=\dfrac{2}{3}BC\)

\(\overrightarrow{AJ}=\overrightarrow{AB}+\overrightarrow{BJ}\)

\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}-\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{BA}-\dfrac{2}{3}\overrightarrow{AC}=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AC}\)

b:

Gọi giao điểm của AG với BC là M

G là trọng tâm của ΔABC

nên AG cắt BC tại trung điểm M của BC

=>\(AG=\dfrac{2}{3}AM\)

Xét ΔABC có AM là trung tuyến

nên \(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

=>\(\overrightarrow{AG}=\dfrac{2}{3}\cdot\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

Đặt \(\overrightarrow{AG}=x\cdot\overrightarrow{AI}+y\cdot\overrightarrow{AJ}\)

\(\overrightarrow{AG}=\dfrac{1}{3}\cdot\overrightarrow{AB}+\dfrac{1}{3}\cdot\overrightarrow{AC};\overrightarrow{AI}=\dfrac{3}{5}\cdot\overrightarrow{AB}+\dfrac{2}{5}\cdot\overrightarrow{AC};\overrightarrow{AJ}=\dfrac{5}{3}\overrightarrow{AB}-\dfrac{2}{3}\cdot\overrightarrow{AC}\)

Ta có hệ phương trình sau:

\(\left\{{}\begin{matrix}\dfrac{1}{3}=x\cdot\dfrac{3}{5}+y\cdot\dfrac{5}{3}\\\dfrac{1}{3}=x\cdot\dfrac{2}{5}+y\cdot\dfrac{-2}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\cdot\dfrac{3}{5}+y\cdot\dfrac{5}{3}=\dfrac{1}{3}\\x\cdot\dfrac{2}{5}+y\cdot\dfrac{-2}{3}=\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}9x+25y=5\\6x-10y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}18x+50y=10\\18x-30y=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}80y=-5\\6x-10y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{16}\\6x=10y+5=-\dfrac{5}{8}+5=\dfrac{35}{8}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{16}\\x=\dfrac{35}{48}\end{matrix}\right.\)

Vậy: \(\overrightarrow{AG}=\dfrac{35}{48}\overrightarrow{AI}-\dfrac{1}{16}\overrightarrow{AJ}\)


Các câu hỏi tương tự
Kinder
Xem chi tiết
Kinder
Xem chi tiết
Girl_Vô Danh
Xem chi tiết
Bùi Mai Phương
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Kinder
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
10.1_1 Đỗ Thảo Ny
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết