Ta có: \(\left(a^3+b^3\right)\left(a+b\right)-ab\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\frac{\left(a^3+b^3\right)\left(a+b\right)}{ab}=\left(1-a\right)\left(1-b\right)\) \((*)\)
\(+)\frac{\left(a^3+b^3\right)\left(a+b\right)}{ab}=\left(\frac{a^2}{b}+\frac{b^2}{a}\right)\left(a+b\right)\ge2\sqrt{ab}.2\sqrt{ab}=4ab\left(1\right)\)
\(+)\left(1-a\right)\left(1-b\right)=1-\left(a+b\right)+ab\le1-2\sqrt{ab}+ab\left(2\right)\)
Từ: \((1)(2)(*)\) ta được:
\(4ab\le1-2\sqrt{ab}+ab\Leftrightarrow3ab+2\sqrt{ab}-1\le0\)
\(\Rightarrow0< ab\le\frac{1}{9}\)
Từ trên ta suy ra được \(Max_P=\frac{1}{9}\)