cho x,y>0 thỏa mãn x+2y\(\ge\)18.tìm giá trị nhỏ nhất của
P=\(\frac{9x+18y}{xy}+\frac{2x-5y}{12}+2018\)
Cho x,y > 0 và x+2y ≤ 18 . Tính giá trị nhỏ nhất của biểu thức \(P=\frac{9x+18y}{xy}+\frac{2x-5y}{12}+2018\)
Cho hai số dương x,y thay đổi thỏa mãn xy=2. Tìm GTNN của biểu thức M=\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{2x+y}\)
cho x,y,z thỏa mãn xyz=1. tìm GTNN của \(T=\dfrac{xy}{z^2x+z^2y}+\dfrac{yz}{x^2y+x^2z}+\dfrac{zx}{y^2x+y^2z}\)
Cho 2 số thực dương x, y thỏa mãn 2x + 2y =< 1
Tìm GTNN của biểu thứ P = xy + 1/xy
Cho : x,y,z là các số dương thỏa mãn \(\sqrt{x+2}-x^3=\sqrt{x+2}-y^3\)
tìm GTNN của \(x^2+2xy-y^2+2y+2020\)
Cho ba số thực dương x,y,z thỏa mãn x+y+z = 2. Tìm GTNN của biểu thức:
\(P=\dfrac{1}{xy}+\dfrac{1}{yz}\)
tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{9x+18y}{xy}+\dfrac{2x-5y}{12}+2018\)
Tìm các số nguyên dương x và y thỏa mãn: \(\dfrac{2x+2y}{xy+2}\) có giá trị là 1 số nguyên