lấy 9 điểm phan biệt nằm trong hình vuông abcd co cạnh =2 sao cho ko có bất ki 3 điểm nào thẳng hàng .cm tồn tại 3 trong 9 điểm taoh nên 1 tam giác có diện tich bé hơn 1
Trong 1 đường thẳng cho 2016 điểm sao cho 3 điểm bất kì là 3 đỉnh trong 1 tam giác có diện tích khồng lớn hơn 1
Chứng minh 2016 điểm có diện tích không lớn hơn 4
Cho hình vuông ABCD,E là điểm nằm trong hình vuông sao cho góc EBC=góc ECB=15 độ.F là điểm nằm ngoài hình vuông cho góc FDC=góc FCD=60 độ
a,Chứng minh tam giác AED đều
b,CMR 3 điểm B,E,F thẳng hàng
P/s: Em còn câu b mn giúp em vs :((
Cho tam giác MNP, trung tuyến MK. G là điểm nằm giữa M và K sao cho: MG/MK=1/3. Một đường thẳng đi qua G cắt các cạnh MN, MP thứ tự tại T và S (T, S không trùng với đỉnh của tam giác MNP). CM: MN/MT+MP/MS=6
Cho tam giác ABC có 3 góc nhọn, đường cao AH. I là 1 điểm nằm giữa A và H. Các tia BI, CI cắt cạnh AC, AB tương ứng tại M và N. CHứng minh: HI là tia phân giác của góc MHN
Cho tam giác ABC có 3 góc nhọn đường cao AH. Trên cạnh AC lấy điểm M, trên cạnh AB lấy điểm N sao cho HA là tia phân giác của góc MHN. CM: 3 đường BM, CN,AH đồng quy
Cho tam giác ABC đều, O là trung điểm của BC. M và N là các điểm trên AB và AC sao cho góc MON=60 độ. CM:
a) Tam giác OBM đồng dạng với tam giác NCO.
b) Tam giác OBM đồng dạng với tam giác NOM; MO là phân giác của góc BMN
c) O cách đều 3 cạnh AB, AC, MN
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.