Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
Cho tam giác ABC có 3 góc nhọn. Trên đường cao AH của tam giác ABC lấy điểm M (M nằm giữa A và H). Tia BM cắt AC tại I, tia CM cắt AB tại K. Chứng minh HA là tia phân giác của \(\widehat{KHI}\)
Cho tam giác ABC nhọn, đường cao AH. Lấy điểm M trên AB, N trên AC sao cho: góc NHA=góc MHA. CHứng minh: AH, CM, BN đồng quy
Cho tam giác ABC có 3 góc nhọn, đường cao AH. I là 1 điểm nằm giữa A và H. Các tia BI, CI cắt cạnh AC, AB tương ứng tại M và N. CHứng minh: HI là tia phân giác của góc MHN
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
Cho tam giác ABC vuông tại A có AB=15 cm AC=20cm. Vẽ AH vuông góc với BC tại H.
1,Chứng minh tam giác HBA và tam giác ABC đồng dạng. 2,Tính BC, AH.
3,Vẽ tia phân giác của góc BAH cắt BH tại D. Tính BH DH .
4, Trên cạnh HC lấy E sao cho HE =HA, qua E vẽ đường thẳng vuông góc với cạnh BC cắt AC tại M, qua C vẽ đường thẳng vuông góc với BC cắt tia phân giác của góc MEC tại F. Chứng minh H,M,F thẳng hàng
* Không cần làm ạ
Các bạn nhìn hình ảnh xem đây là dùng phương pháp gì để chứng minh thẳng hàng ạ ! ( mình chưa thấy có cái gì liên quan chỉ chứng minh được I trùng với M sao thẳng hàng được ạ )
51.387 lượt xem
TrướcSau
Cho tam giác ABC vuông tại A (AC > AB) đường cao AH (H ∈ BC). Trên tia HC lấy điểm D sao cho HD = HA. Đường vuông góc với BC tại D cắt AC tại E
1. Chứng minh rằng △CDE~△AHB
2. Gọi M là trung điểm của đoạn BE. Chứng minh rằng △BHM~△BEC. Tính số đo góc AHM
3. Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC)<!--[if gte ms Equation 12]>HD HD
Cho tam giác ABC vuông ở A, đường cao AH. Trên tia đối của tia HA lấy điểm D sao cho HD=HA. Đường thẳng D song song với AB cắt tia HC tại E.
a) CM: HB=HE và tứ giác ABDE là hình thoi
b) Tam giác ABC cần có thêm điều kiện gì để tứ giác ABDE là hình vuông
c) Nếu AB=3cm, AC=4cm, hãy tính diện tích tam giác ABE
Cho tam giác ABC đều, O là trung điểm của BC. M và N là các điểm trên AB và AC sao cho góc MON=60 độ. CM:
a) Tam giác OBM đồng dạng với tam giác NCO.
b) Tam giác OBM đồng dạng với tam giác NOM; MO là phân giác của góc BMN
c) O cách đều 3 cạnh AB, AC, MN