Do tam giác FCD đều nên FC = DC = CB. Do đó tam giác BCF cân tại C nên \(\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}=\dfrac{180^o-150^o}{2}=15^o=\widehat{EBC}\).
Vậy B, E, F thẳng hàng.
Do tam giác FCD đều nên FC = DC = CB. Do đó tam giác BCF cân tại C nên \(\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}=\dfrac{180^o-150^o}{2}=15^o=\widehat{EBC}\).
Vậy B, E, F thẳng hàng.
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)
Cho hình vuông ABCD có cạnh là a . Trên cạnh BC lấy điểm E bất kì ( E khác B và C ) đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại H . Gọi F là giao điểm của hai đường thẳng AE và DC
1.Chứng minh tam giác AHE vuông cân
2.Chứng minh \(AB^2=HD.DF\)
3.Chứng minh \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) không đổi khi E di chuyển trên cạnh BC
cho hình chữ ngật ABCD có AB=3cm, BC=3cm
a) Tính BD
b) Qua B, vẽ đường thẳng vuông góc với BD cắt đường thẳng DC tại E. Vẽ CF vuông góc với BE tại F. Chứng minh: tam giác BCD đồng dạng tam giác CFB. Tính CF
c) Gọi O là giao điểm của AC và BD. Nối EO cắt CF tại I và cắt BC tại K. Chứng minh: I là trung điểm của CF
d) chứng minh: D,K, F thẳng hàng
Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a) Tứ giác AMIN là hình gì? Vì sao?
b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi.
c) Đường thẳng BN cắt DC tại K. Chứng minh: \(\dfrac{DK}{DC}=\dfrac{1}{3}\)
Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy
Cho tam giác ABC vuông tại A, đường cao AH, phân giác BI. Qua C kẻ đường thẳng vuông góc với BI tại D. Gọi E là giao điểm của AB và CD. Gọi F là hình chiếu của D trên BE. Chứng minh: (BD/DE)^2=BF/EF