O<=a,b,c<=2
0<=a^2 <=4
0<=b^2 <=4
0<=b^2 <=4
công vào
0<=a^2 +b^2 +c^2 +<= 3.4 =12
O<=a,b,c<=2
0<=a^2 <=4
0<=b^2 <=4
0<=b^2 <=4
công vào
0<=a^2 +b^2 +c^2 +<= 3.4 =12
Cho \(0\le a,b,c\le2\)và \(a+b+c=3\). Tìm Min, Max: \(P=^2+b^2+c^2\)
Cho \(0\le a,b,c\le2\) và \(a+b+c=3\). Tìm Min, Max: \(P=a^2+b^2+c^2\)
cho a,b,c > 0 có a+b+c\(\le\)3. Tìm Min
B=\(\dfrac{1}{\left(a+2b\right)\left(a+2c\right)}+\dfrac{1}{\left(b+2a\right)\left(b+2c\right)}+\dfrac{1}{\left(c+2a\right)\left(c+2b\right)}\)
Cho a + b + c = 2. Tìm min \(K=a^2+b^2+c^2\)
Bài 1: Với a,b,c > 0
a, a2 + b2 + c2 ≥ ab + bc + ac
b, a4 + b4 + c4 ≥ abc (a + b + c)
c,(a + b - c) (a + b + c) (-a + b + c) ≤ abc
Giups mik với nhé!!
Cho a,b,c là các số thực dương. Chứng minh bất đẳng thức:
\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ac+b^2}+\dfrac{c+a}{ab+c^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Bài 1:
a) ( x + 1 )( x - 3 ) ≤ 0
b) \(\left(x^2+1\right)\left(x-2\right)\) ≥ 0
Bài 2:
a) \(\frac{x-2}{x+1}< 0\)
b) \(\frac{-2}{x-1}>0\)
c) \(\frac{x-1}{x+3}>0\)
d)\(\frac{x^2-x+1}{x+3}>0\)
e) \(\frac{x-2}{x+1}\) ≤ 0
f) \(\frac{x^2}{x-3}\) ≥ 0
Chứng minh các bất đẳng thức sau:
1, x3 + y3 \(\ge\)x2y+xy2 (x, y \(\ge\)0)
2, x4+ y4 \(\ge\)x3y+xy3
3, a2+b2+1\(\ge\)ab+a+b
4, a2+b2+c2+\(\frac{3}{4}\)\(\ge\)a+b+c
5,a2+b2+c2+d2\(\ge\)a(b+c+d)
6, x3-4x+5 >0
7, a4+b4+2 \(\ge\)4ab
8, \(\frac{ab}{a+b}\)+\(\frac{bc}{b+c}\)+\(\frac{ca}{c+a}\le\)\(\frac{a+b+c}{2}\)(với a,b,c>0)
Bài 1: Cho a, b, c thõa mãn 0<a<=b<=c. CMR:
a/b+b/c+c/a>=b/a+c/b+a/c
Bài 2: Cho a, b, c>0 CMR
a/bc+b/ca+c/ab>=2(1/a+1/b+1/c)
Bài 3: CMR với mọi x, y ta có
x^3/x^2+xy+y^2>=(2x-y)/3