CMR : a + b + 2a2+ 2b2 ≥ 2ab + 2b\(\sqrt{a}+2a\sqrt{b}\) ( a,b ≥ 0)
Với mọi số thực a,b,c. CMR: \(a^2+2b^2-2ab+2a-4b+2\ge0\)
Tìm a,b biết
a) \(a^2+9b^2-4a+6a+5=0\)
b) \(a^2+2b^2+2ab-2b+2=0\)
Cho a,b,c t/m; c \(\ne\)2b, a + b \(\ne\) \(\frac{c}{2}\), c2 = 4(ac + bc - 2ab)
CMR: \(\frac{4a^2+\left(2a-c\right)^2}{4b^2+\left(2b-c\right)^2}=\frac{2a-c}{2b-c}\)
cho 2 số dương a ,b thỏa mãn \(\dfrac{1}{a}\) +\(\dfrac{1}{b}\) =2 .Cmr : Q= \(\dfrac{1}{a^4+b^2+2ab^2}\) +\(\dfrac{1}{a^2+b^4+2a^2b}\)nhỏ hơn hoặc bằng \(\dfrac{1}{2}\)
câu 1: GTNN của b/thức : Q =a^2 + 4b^2 -10a là:
câu 2: hình vuông ABCD có CD 3 căn bậc 2 của 2.khi đó độ dài của đường chéo hình vuông là?
câu 3 :nếu 1/a-1=1 và a,b là số thực khác 0 và 2a+ 3ab -2b khác 0 .GT của b/thức P=(a-2ab-b)/2a+3ab-b là ?
cho a,b là 2 số thỏa mãn a2+2b2+2ab-4b+4=0.
Tính giá trị biểu thức M=\(\frac{\text{a2-7ab+52}}{a-b}\) với a≠b
Cho a, b,c > 0 và \(a+b+c\le1\)
CMR : \(\dfrac{1}{a^2+2bc}+\dfrac{1}{b^2+2ac}+\dfrac{1}{c^2+2ab}\ge9\)
Cho a + b + c = 3 và a, b, c > 0. CMR:
\(\dfrac{a^2}{a+2b^2}+\dfrac{b^2}{b+2c^2}+\dfrac{c^2}{c+2a^2}\ge1\)