+ Qua A vẽ đường thẳng song song với BC cắt BB' cà CC' lần lượt ở N,M
+ ΔAB'N có AN // BC
\(\Rightarrow\dfrac{CB'}{B'A}=\dfrac{CB}{AN}\)
+ Tương tự : \(\dfrac{AC'}{C'B}=\dfrac{AM}{BC}\)
+ ΔAOM có AM // BC
\(\Rightarrow\dfrac{AM}{A'C}=\dfrac{AO}{OA'}\)
+ tương tự : \(\dfrac{AN}{BA'}=\dfrac{AO}{OA'}\)
\(\Rightarrow\dfrac{AM}{A'C}=\dfrac{AN}{BA'}\Rightarrow\dfrac{AN}{AM}=\dfrac{BA'}{A'C}\)
Do đó : \(\dfrac{AC'}{C'B}\cdot\dfrac{BA'}{A'C}\cdot\dfrac{CB'}{B'A}=\dfrac{AM}{BC}\cdot\dfrac{AN}{AM}\cdot\dfrac{BC}{AN}=1\)
