Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nam Phạm An

Câu 6: Gọi O là một điểm bất kì nằm trong tam giác ABC. Các tia AO, BO, CO cắt các cạnh BC,AC,AB theo thứ tự ở A',B',C'. CMR: \(\dfrac{AC'}{C'B}.\dfrac{BA'}{A'C}.\dfrac{CB'}{B'A}=1\)

Khôi Bùi
6 tháng 2 2019 lúc 16:38

undefined

Y
6 tháng 2 2019 lúc 16:59

A B C O A' B' C' M N

+ Qua A vẽ đường thẳng song song với BC cắt BB' cà CC' lần lượt ở N,M

+ ΔAB'N có AN // BC

\(\Rightarrow\dfrac{CB'}{B'A}=\dfrac{CB}{AN}\)

+ Tương tự : \(\dfrac{AC'}{C'B}=\dfrac{AM}{BC}\)

+ ΔAOM có AM // BC

\(\Rightarrow\dfrac{AM}{A'C}=\dfrac{AO}{OA'}\)

+ tương tự : \(\dfrac{AN}{BA'}=\dfrac{AO}{OA'}\)

\(\Rightarrow\dfrac{AM}{A'C}=\dfrac{AN}{BA'}\Rightarrow\dfrac{AN}{AM}=\dfrac{BA'}{A'C}\)

Do đó : \(\dfrac{AC'}{C'B}\cdot\dfrac{BA'}{A'C}\cdot\dfrac{CB'}{B'A}=\dfrac{AM}{BC}\cdot\dfrac{AN}{AM}\cdot\dfrac{BC}{AN}=1\)


Các câu hỏi tương tự
Tiểu Vy Vy
Xem chi tiết
Big City Boy
Xem chi tiết
Tiểu Vy Vy
Xem chi tiết
Big City Boy
Xem chi tiết
Bướm Đêm Sát Thủ
Xem chi tiết
Hày Cưi
Xem chi tiết
ITACHY
Xem chi tiết
Big City Boy
Xem chi tiết