2.
\(\left(a\right)x^2+4y^2-4xy\)
\(\Rightarrow\left(x-2y\right)^2\)
\(\left(b\right)\left(x-4\right)^2+\left(x-4\right)\)
\(\Rightarrow\left(x-4\right)\left(x+5\right)\)
3.
\(x\left(x+1\right)-y\left(x+1\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x+1\right)\)
Thay x,y........
\(\Rightarrow\left(2010-2011\right)\left(2010+1\right)\)
\(=-2011\)
\(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy\)
Thay \(x+y=-8\&xy=15\) ta được:
\(\left(x+y\right)^2-2xy=\left(-8\right)^2-2.15=64-30=34\)
Bài 2:
a, \(x^2+4y^2-4xy=x^2-4xy+4y^2=\left(x-2y\right)^2\)
b, \(\left(x-4\right)^2+\left(x-4\right)=\left(x-4\right)\left(x-4+1\right)=\left(x-4\right)\left(x-3\right)\)
c, \(2x^3-8x=2x\left(x^2-4\right)=2x\left(x+2\right)\left(x-2\right)\)
Bài 3:
\(x\left(x+1\right)-y\left(x+1\right)=\left(x+1\right)\left(x-y\right)\)
Thay \(x=2010\&y=2011\) ta được:
\(\left(x+1\right)\left(x-y\right)=\left(2010+1\right)\left(2010-2011\right)=-1.2011=-2011\)