Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồng Nguyễn Thị Bích

Câu 1 :Cho (d): \(y=\left(m-1\right)x+2m\). Khoảng cách lớn nhất từ O đến (d) là ?

Câu 2 : Cho parabol (P) \(y=\frac{1}{2}x^2\) và đường thẳng (d): \(y=x+m\) . Tìm m để (d) cắt (P) tại hai điểm A, B sao cho tam giác AOB vuông tại O .

Câu 3 : Cho hàm số bậc nhất \(y=\left(m^2-4m-4\right)x+3m-2\) có đồ thị là (d) .Tìm số giá trị nguyên dương của m để đường thẳng (d) cắt trục hoành và trục tung lần lượt tại hai điểm A, B sao cho tam giác AOB là tam giác cân .

Câu 4 : Hàm số \(y=\frac{4}{x}+\frac{9}{1-x}\) với 0 < x < 1, đạt giá trị nhỏ nhất tại \(x=\frac{a}{b}\) ( a,b nguyên dương , phân số \(\frac{a}{b}\) tối giản khi đó a + b bằng bao nhiêu ?

Akai Haruma
14 tháng 7 2020 lúc 10:30

Câu 1:

ĐK: $m\neq 1$

Giả sử $(d)$ cắt $Ox, Oy$ lần lượt tại $A$ và $B$. Ta có:

$(m-1)x_A+2m=y_A=0\Rightarrow x_A=\frac{-2m}{m-1}$

$y_B=(m-1).x_B+2m=(m-1).0+2m=2m$

$\Rightarrow OA=|x_A|=2|\frac{m}{m-1}|$ và $OB=|y_B|=2|m|$

Gọi khoảng cách từ $O$ đến $(d)$ là $h$.

Theo công thức hệ thức lượng trong tam giác vuông:

\(\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}=\frac{1}{4(\frac{m}{m-1})^2}+\frac{1}{4m^2}=\frac{(m-1)^2+1}{4m^2}\)

Để $h$ max thì $\frac{(m-1)^2+1}{4m^2}=\frac{1}{h^2}$ min

Ta có:

$\frac{(m-1)^2+1}{4m^2}=\frac{1}{2}(\frac{1}{m^2}-\frac{1}{m}+\frac{1}{4})+\frac{1}{8}=\frac{1}{2}(\frac{1}{m}-\frac{1}{2})^2+\frac{1}{8}$ min bằng $\frac{1}{8}$ khi $\frac{1}{m}-\frac{1}{2}=0\Leftrightarrow m=2$

Akai Haruma
14 tháng 7 2020 lúc 10:40

Câu 2:

Hoành độ giao điểm $x_A,x_B$ là nghiệm của PT:

$\frac{1}{2}x^2=x+m$

$\Leftrightarrow x^2-2x-2m=0(*)$

Để $(*)$ có 2 nghiệm phân biệt $x_A,x_B$ thì $\Delta'=1+2m>0\Leftrightarrow m> \frac{-1}{2}$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_A+x_B=2\\ x_Ax_B=-2m\end{matrix}\right.\)

Vì $A,O,B$ là 3 điểm pb nên $x_A,x_B\neq x_O\Leftrightarrow x_A,x_B\neq 0\Leftrightarrow x_Ax_B\neq 0\Leftrightarrow m\neq 0$

Để $AOB$ vuông tại $O$ thì: $OA^2+OB^2=AB^2$

$\Leftrightarrow x_A^2+y_A^2+x_B^2+y_B^2=(x_A-x_B)^2+(y_A-y_B)^2$

$\Leftrightarrow x_Ax_B+y_Ay_B=0$

$\Leftrightarrow x_Ax_B+(x_A+m)(x_B+m)=0$

$\Leftrightarrow 2x_Ax_B+m(x_A+x_B)+m^2=0$

$\Leftrightarrow -4m+2m+m^2=0\Leftrightarrow m^2-2m=0$

$\Leftrightarrow m=0$ hoặc $m=2$. Vì $m\neq 0$ nên $m=2$ là đáp án duy nhất thỏa mãn

Akai Haruma
14 tháng 7 2020 lúc 10:53

Câu 3:

ĐK để $y$ là hàm bậc nhất: $m^2-4m-4\neq 0$

$A\in Ox$ nên $y_A=0$; $B\in Oy$ nên $x_B=0$

$A,B\in (d)$ nên:

$(m^2-4m-4)x_A+3m-2=y_A=0\Rightarrow x_A=\frac{2-3m}{m^2-4m-4}$

$y_B=(m^2-4m-4)x_B+3m-2=(m^2-4m-4).0+3m-2=3m-2$

$\Rightarrow$:

$OA=|x_A|=|\frac{2-3m}{m^2-4m-4}|$

$OB=|y_B|=|3m-2|$

Để $A,O,B$ là 3 điểm của 1 tam giác thì $x_A\neq x_O; y_B\neq y_O$

$\Leftrightarrow m\neq \frac{2}{3}$

Để $AOB$ cân (tại $O$??) thì : $OA=OB$

$\Leftrightarrow |\frac{2-3m}{m^2-4m-4}|=|3m-2|$

$\Leftrightarrow \frac{2-3m}{m^2-4m-4}=\pm (3m-2)$

Nếu $\frac{2-3m}{m^2-4m-4}=3m-2$

$\Leftrightarrow (2-3m)(\frac{1}{m^2-4m-4}+1)=0$

$\Leftrightarrow \frac{(2-3m)(m^2-4m-3)}{m^2-4m-4}=0$

$\Rightarrow (2-3m)(m^2-4m-3)=0$

$\Rightarrow m=2\pm \sqrt{7}$ (thỏa mãn)

Nếu $\frac{2-3m}{m^2-4m-4}=2-3m$

$\Leftrightarrow (2-3m)(\frac{1}{m^2-4m-4}-1)=0$

$\Leftrightarrow \frac{(2-3m)(m^2-4m-5)}{m^2-4m-4}=0$

$\Rightarrow (2-3m)(m^2-4m-5)=0$

$\Rightarrow m=5;-1$

Vậy tóm lại có $4$ giá trị $m$ thỏa mãn.

Akai Haruma
14 tháng 7 2020 lúc 10:55

Câu 4:

$0< x< 1\Rightarrow x>0; 1-x>0$

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(\frac{4}{x}+\frac{9}{1-x}\right)(x+1-x)\geq (2+3)^2\)

\(\Leftrightarrow y\geq 25\). Vậy $y_{\min}=25$. Dấu "=" xác định tại \(\frac{2}{x}=\frac{3}{1-x}\Leftrightarrow x=\frac{2}{5}\)

$\Rightarrow a=2; b=5\Rightarrow a+b=7$

Akai Haruma
14 tháng 7 2020 lúc 11:01

Cách khác câu 4 (dùng AM-GM và pp chọn điểm rơi)

Lấy $k>0$. Áp dụng BĐT AM-GM cho các số dương thì:

$kx+\frac{4}{x}\geq 4\sqrt{k}$

$k(1-x)+\frac{9}{1-x}\geq 6\sqrt{k}$

Cộng theo vế:

$k+y\geq 10\sqrt{k}\Leftrightarrow y_{\min}=10\sqrt{k}-k$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} kx=\frac{4}{x}\\ k(1-x)=\frac{9}{1-x}\end{matrix}\right.\Rightarrow \frac{4}{x^2}=\frac{9}{(1-x)^2}\)

Kết hợp $1> x>0$ ta giải PT ra được $x=\frac{2}{5}$ nên $a+b=2+5=7$


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Hiển Bùi
Xem chi tiết
Phạm Mỹ Dung
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
Ngân Bích
Xem chi tiết
Trang Triệu
Xem chi tiết
Big City Boy
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Nguyễn Thị Thanh Nhàn
Xem chi tiết