Câu 1: Cho A = (-5;9] , B = [ n-2; n)
Tìm tất cả các số thực n sao cho:
a/ \(A\cap B=\varnothing\)
b/ \(A\cap B\ne\varnothing\)
Câu 2: Cho M= [1 ; 3], N = (m; m+1) , với m \(\in\) R.
Tìm tất cả các giá trị m sao cho \(M\cap N\ne\varnothing\)
Câu 3: Cho A= (x ; x+2) , B= (2;5). Tìm x để \(A\cap B\ne\varnothing\)
Câu 1:
Bạn vẽ trục số 1 cái trên 1 cái dưới cho dễ tưởng tượng
Khi đó, để \(A\cap B=\oslash\) thì có 2 khả năng xảy ra:
\(n\leq -5\) hoặc \(n-2>9\Leftrightarrow n> 11\)
Vậy $n\leq -5$ hoặc $n> 11$
Ngược lại. Để \(A\cap B\neq \oslash\) thì \(n> -5\) hoặc $n< 11$
Câu 2:
Tương tự câu 1: Để \(M\cap N\neq \oslash \Rightarrow m+1\leq 1\) hoặc \(m\geq 3\)
Hay \(m\leq 0\) hoặc $m\geq 3$
Câu 3:
Để \(A\cap B\neq \oslash \) thì \(x+2\leq 2\) hoặc $x\geq 5$
hay \(x\leq 0\) hoặc $x\leq 5$