\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge2\\m+4\le5\end{matrix}\right.\\m\ge8\end{matrix}\right.\) \(\Rightarrow m\ge8\)
Vậy \(A\cap B\ne\varnothing\Leftrightarrow m< 8\)
\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge2\\m+4\le5\end{matrix}\right.\\m\ge8\end{matrix}\right.\) \(\Rightarrow m\ge8\)
Vậy \(A\cap B\ne\varnothing\Leftrightarrow m< 8\)
Cho các tập hợp \(A=\left(-\infty;m\right)\) và \(B=\left[3m-1;3m+3\right]\).Tìm m để
a,\(A\cap B=\varnothing\) b,\(B\subset A\)
c,\(A\subset C_RB\) d,\(C_RA\cap B\ne\varnothing\)
Cho A = [2 ; 4) ; B = ( - \(\infty\) ; m ]
a) Tìm m để A \(\cap\) B = \(\varnothing\)
b) Tìm m để A \(\cap\) B \(\ne\) \(\varnothing\)
c) Tìm m để A \(\subset\) B
*Cần gấp làm ơn giúp mình với*
Xác định điều kiện của a,b để:
a, \(A\cap B\ne\varnothing\)với \(A=\left(a-1;a+2\right);B=(b;b+4]\)
b, \(E\subset\left(C\cup D\right)\) với \(C=\left[-1;4\right];D=R\backslash\left(-3;3\right);E=\left[a;b\right]\)
Cho 2 tập hợp : A = \(\left[2m-1;-\infty\right];B=\left(-\infty;m+3\right)\)A\(\cap\)B # \(\varnothing\) timf m khi và chir khi
Cho \(A=(-4;5];B=\left(2m-1;m+3\right)\), tìm m sao cho:
a, \(A\subset B\)
b, \(B\subset A\)
c, \(A\cap B=\varnothing\)
d, \(A\cup B\) là một khoảng
Cho tập hợp \(A=\left[m-1;\frac{m+1}{2}\right]\) và \(B=\left(-\infty;-2\right)\cup[2;+\infty)\). Tìm m để
a) \(A\subset B\)
b) \(A\cap B=\phi\)
Tìm m sao cho:
a, \(A\cup B=R\) biết \(A=(-\infty;3];B=[m;+\infty)\)
b, \(C\cup D\) là một khoảng (tùy theo m xác định khoảng đó), biết \(C=\left(m;m+2\right);D=\left(-3;1\right)\)
Cho \(A=(-\infty;1],B=[1;+\infty);C=(0;1]\)
Kết quả nào sau đây sai
A :\(\left(A\cup B\right)/C=(-\infty;0]\cup\left(1;+\infty\right)\)
B : \(A\cap B\cap C=\left\{-1\right\}\)
C:\(A\cup B\cup C=\left(-\infty;+\infty\right)\)
D:\((-\infty;-1]\cup\left(3;+\infty\right)\)
Cho A={\(x\in Z||x|\le\dfrac{10}{3}\)}
B=\(\left\{x\in R\left|\left(x^2-4\right)\times\left(16-x^2\right)\right|=0\right\}\)
1, Tìm \(A\cap B\)\(,A\cup B\)A-B,B-A
2, Tìm tất cả tập X thỏa mãn : \(X\in A\), \(X\in B\)
3, Tìm tập hợp Y thỏa mãn :\(Y\subset A,Y\cap B\ne\varnothing\)
4, Tìm số tập hợp D thỏa mãn : \(D\subset A,D\subseteq B\)