37/6pi=pi/6+6pi
=>37/6pi và pi/6 có cùng tia cuối
-59/6pi=pi/6-60/6pi=-10pi+pi/6
=>Ba góc này có chung tia cuối vì chúng cùng nằm ở điểm pi/6 trên vòng tròn lượng giác
37/6pi=pi/6+6pi
=>37/6pi và pi/6 có cùng tia cuối
-59/6pi=pi/6-60/6pi=-10pi+pi/6
=>Ba góc này có chung tia cuối vì chúng cùng nằm ở điểm pi/6 trên vòng tròn lượng giác
Tìm tập xác định của các Hàm số sau
a) y = cot5x
b) y = tan6x
d) y = cot(3x-\(\dfrac{\pi}{6}\))
e) y = cot(4x-\(\dfrac{\pi}{3}\))
1) Giai
a) cos2x = 0
b) cos2x = 1
c) cos ( 2x + \(\dfrac{\Pi}{6}\)) = 1
d) cos ( 2x + \(\dfrac{\Pi}{6}\)) = -1
Tìm tập xác định của hàm số sau
a) y=cot(\(3x+\dfrac{\pi}{6}\)) + \(\dfrac{tan2x}{sinx+1}\)
b) y=\(\sqrt{5+2cot^2x-sinx}\) + cot\(\left(\dfrac{\pi}{2}+x\right)\)
Xét sự biến thiên của các hàm số
a, y = sinx trên (\(-\dfrac{\pi}{6}\);\(\dfrac{\pi}{3}\))
b, y = cosx trên (\(\dfrac{2\pi}{3}\);\(\dfrac{3\pi}{2}\))
Hãy vẽ đồ thị của các hàm số :
a) \(y=\tan\left(x+\dfrac{\pi}{4}\right)\)
b) \(y=\cot\left(x-\dfrac{\pi}{6}\right)\)
gọi h (mét) là độ cao của mực nước của sông Cái được tính tại thời điểm t(giờ) trong 1 ngày. Hàng ngày độ cao của nước sông được cho bởi công thức\(h=2sin\left(\dfrac{\pi t}{18}-\dfrac{\pi}{6}\right)+5\). Hỏi tại thời điểm nào trong ngày thì mực nước của con sông cao nhất?
A. 3 giờ
B. 7 giờ
C. 12 giờ
D.16 giờ
Diễn tả giá trị lượng giác của góc sau bằng giá trị lượng giác của góc x
\(cos^{2015}\left(x-\dfrac{11\pi}{2}\right);cos^{2019}\left(x+\dfrac{7\pi}{2}\right);sin^{2019}\left(\dfrac{5\pi}{2}-x\right);cot^2\left(x-\dfrac{\pi}{2}\right)\)
giải các pt sau:
a, cot(x-\(\dfrac{\pi}{3}\))=1
b, tan(x+\(48^o\))=tan\(25^o\)
c, tan(x+\(\dfrac{3\pi}{4}\))=tan\(\dfrac{\pi}{7}\)
Tìm tập hợp xác định của các hàm số :
a) \(y=\dfrac{1+\cos x}{\sin x}\)
b) \(y=\sqrt{\dfrac{1+\cos x}{1-\cos x}}\)
c) \(y=\tan\left(x-\dfrac{\pi}{3}\right)\)
d) \(y=\cot\left(x+\dfrac{\pi}{6}\right)\)