a)\(\sqrt{\left(x-3\right)^2}=|x-3|\)(*)
TH1: x-3 \(\ge0\Leftrightarrow x\ge3\)
(*)=> |x - 3|=x-3
TH2 \(x-3< 0\Leftrightarrow x< 3\)
(*)=>|x-3|=-(x-3)=3-x
Vậy khi x\(\ge\)3 thì (*)=x-3
Khi x<3 thì (*)=3-x
b) ĐK: x<\(\dfrac{1}{3}\)
\(\sqrt{\left(3x+1\right)^2}+2x\\ =\left|3x+1\right|+2x\left(@\right)\)
TH1:3x+1\(\ge\)0\(\Leftrightarrow3x\ge-1\Leftrightarrow x\ge-\dfrac{1}{3}\)=>\(-\dfrac{1}{3}\le x\le\dfrac{1}{3}\)
(@)=>|3x+1|+2x
=3x+1+2x
=5x+1
TH2 \(3x+1< 0\Leftrightarrow3x< -1\Leftrightarrow x< -\dfrac{1}{3}\)
(@)=>|3x+1|+2x
= -3x-1+2x
= -x-1
c) tương tự như vậy