\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\cdot\dfrac{x-4}{4}=\dfrac{2\sqrt{x}}{4}=\dfrac{1}{2}\sqrt{x}\)
Với x < 0 ; x ≠ 0 ta có:
\(B=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right):\dfrac{4}{x-4}\)
\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\cdot\dfrac{x-4}{4}\)
\(=\dfrac{2\sqrt{x}}{4}=\dfrac{\sqrt{x}}{2}\)
Vậy \(B=\dfrac{\sqrt{x}}{2}\).