có/x+y/ lớn hơn hoặc bằng
/x/+/y/ dấu bằng xảy ra <=>
xy lớn hơn hoặc bằng 0
mà xy=1 =>/x+y/=/x/+/y/ (1)
lại có /x/+/y/-2\(\sqrt{xy}\)\(=\left(\sqrt{x}-\sqrt{y}\right)^2\) lớn hơn hoặc bằng 0
=>/x/+/y/ lớn hơn hoặc bằng 2\(\sqrt{xy}\)=2 (2)
từ (1) và (2)
=>/x+y/ lớn hơn hoặc bằng 2
=> MIN /x+y/ =2
dấu bằng xảy ra
<=> /x+y/=2
hay /x/+/y/ \(=2\sqrt{xy}\)
=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)
=>\(\sqrt{x}=\sqrt{y}=>x=y\)
mà /x+y / =2
TH1 x+y=2=>x=y=1
thay vào M ta tính được M=\(\dfrac{3}{4}\)
TH2 x+y =-2 =>x=y=-1
thay vào M ta được
M=\(\dfrac{3}{4}\)