Áp dụng Viet: \(\left\{{}\begin{matrix}a+b=-m\\ab=1\\b+c=-n\\bc=2\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)=mn\)
\(\Rightarrow b^2+ac+ab+bc=mn\Rightarrow b^2+ac+3=mn\)
\(\Rightarrow b^2+ac=mn-3\)
Ta có:
\(\left(b-a\right)\left(b-c\right)=b^2+ac-ab-bc=mn-3-3=mn-6\)
