- Từ điều kiện đề bài ta có: \(ax^2+bx+2\ne\pm\left(x^2-1\right)\)
Ở bài này, ta xét 2 trường hợp lớn:
1) Với \(a=0\). Ta xét 2 trường hợp nhỏ:
+ 1a) \(b\ne-2\):
Ta có: \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1}ax^2+bx+2=\lim\limits_{x\rightarrow1}bx+2=b+2\ne0\\\lim\limits_{x\rightarrow1}x^2-1=0\end{matrix}\right.\)
\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\infty\) (loại).
+ 1b) \(b=-2\). Ta có:
\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{-2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{-2}{x+1}=\dfrac{-2}{1+1}=-1\left(loại\right)\)
2) \(a\ne0\)
- Ta xét 3 trường hợp:
+2a) \(a+b+2=0\Rightarrow b=-2-a\). Khi đó tử thức \(ax^2+bx+2\) có nghiệm là 1 và có thể viết lại thành \(ax^2+bx+2=ax^2-\left(a+2\right)x+2=a\left(x-1\right)\left(x-x_0\right)\left(1\right)\) (x0 là nghiệm còn lại của đa thức).
\(\left(1\right)\Rightarrow ax^2-\left(a+2\right)x+2=ax^2-a\left(1+x_0\right)x+ax_0\)
\(\Rightarrow\left\{{}\begin{matrix}a+2=a\left(1+x_0\right)\\2=ax_0\end{matrix}\right.\Rightarrow x_0=\dfrac{2}{a}\)
Vậy \(ax^2+bx+2=a\left(x-1\right)\left(x-\dfrac{2}{a}\right)=\left(x-1\right)\left(ax-2\right)\), với \(b=-a-2\)
\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{ax-2}{x+1}=\dfrac{a-2}{2}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-5\end{matrix}\right.\) \(\Rightarrow P=a.b=3.\left(-5\right)=-15\)
+2b) \(a-b+2=0\Rightarrow b=a+2\). Khi đó tử thức \(ax^2+bx+2\) có một nghiệm là -1 và có thể được viết lại thành: \(ax^2+bx+2=a\left(x+1\right)\left(x-x_0\right)\left(2\right)\) (x0 là nghiệm còn lại của tử thức).
\(\left(2\right)\Rightarrow ax^2+\left(a+2\right)x+2=a\left(x+1\right)\left(x-x_0\right)\)
\(\Rightarrow ax^2+\left(a+2\right)x+2=ax^2+a\left(1-x_0\right)-ax_0\)
\(\Rightarrow\left\{{}\begin{matrix}a+2=a\left(1-x_0\right)\\2=-ax_0\end{matrix}\right.\Rightarrow x_0=\dfrac{-2}{a}\)
Vậy \(ax^2+bx+2=\left(x+1\right)\left(ax+2\right)\)
\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{ax+2}{x-1}\)
Ta có: \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1}ax+2=a+2\ne0\\\lim\limits_{x\rightarrow1}x-1=0\end{matrix}\right.\)
\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{ax+2}{x-1}=\infty\) (loại)
+2c) Tử thức \(ax^2+bx+2\) không có nghiệm là 1 và -1. Làm tương tự như trường hợp 2b) (từ khúc tính lim).
Vậy \(P=-15\)
Đặt ax^2+bx+2=(x-1)(ax-2)
lim ax^2+bx+2/x^2-1 = ax-2/x+1
lim ax-2/x+1 = 1/2 suy ra a.1-2/1+1 = 1/2 suy ra a= 3
ax^2+bx+2=(x-1)(3x-2)= 3x^2-5x+2
a=3, b=-5 nên P=3. -5= 15