\(\sin\alpha=\sqrt{1-\dfrac{400}{29^2}}=\dfrac{21}{29}\)
\(\tan\alpha=\dfrac{21}{20}\)
\(\cot\alpha=\dfrac{20}{21}\)
\(\sin\alpha=\sqrt{1-\dfrac{400}{29^2}}=\dfrac{21}{29}\)
\(\tan\alpha=\dfrac{21}{20}\)
\(\cot\alpha=\dfrac{20}{21}\)
sin a nhân với cos a biết tan a + cot a = 3
Cho sin alpha = 15/17. Tính cos alpha, tan alpha
Tính:
a, A= 4cos^2 alpha - 6 sin^2 alpha, biết sin alpha = 1/5
b, B= sin^2 x cos alpha, biết tan alpha + cot alpha = 3
Cho \(\Delta ABC\) vuông tại A \(\left(AB\ne AC\right)\) . CMR:
\(a,\frac{\sin B-\sin C}{\cos B-\cos C}< 0\)
\(b,\frac{\tan B-\tan C}{\cot B-\cot C}< 0\)
\(c,\cot B+\cot C>2\)
Chứng minh:
\(a,tan\alpha=\frac{sin\alpha}{cos\alpha}\)
\(b,cot\alpha=\frac{cos\alpha}{sin\alpha}\)
:((
Cho tam giác ABC có 3 góc nhọn AD , BE , CF là đường cao .C/m
a) AD . BE . CF = AB . BC . CA . Sin A . Sin B . Sin C = AB . BC . CA . Cos góc CAD . Cos ABE . Cos BCF
b) Tính \(\dfrac{^{^SAEF}}{^{SABC}}=^{^{ }Cot^2A}\)
c) \(\dfrac{^{SADF}}{SABC}=1-Cót^{2
}A-Cot^2B-Cot^2C\)
d) Gọi M là trung điểm BC , giả sử góc BAC = 60 độ , CMR : tam giác MFC đều
Bài 1: Cho cos a = 0,7651 với 00<a<900
a) Tính số đo của góc a ( độ, phút, dây)
b) Tính B=8cos4a -8cos2a -cos4a +1,05678
Bài 2: Cho cot a =\(\dfrac{20}{21}\) . Tính A= \(\dfrac{2\cos^2a+\cos\dfrac{a}{3}}{\sin\dfrac{a}{2}-3\sin2a}\)
Chứng minh các công thức sau :
\(Tan\alpha=\dfrac{sin\alpha}{cos\alpha}\)
\(Cot\alpha=\dfrac{cos\alpha}{sin\alpha}\)
\(sin^2\alpha+cos^2\alpha=1\)
\(1+tan^2\alpha=\dfrac{1}{cos^2\alpha}\)
\(1+cos^2\alpha=\dfrac{1}{sin^2\alpha}\)
\(cos^4\alpha-sin^4\alpha=2cos^2\alpha-1\)
1. Đơn giản biểu thức
a. \(\sin\alpha\cdot\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
b. \(\left(\sin^2\alpha+\cos^2\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
c. \(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\)
Đơn giản các biểu thức sau:
\(a,\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
\(b,\sin\alpha\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)