Biết \(a^2+ab+\frac{b^3}{3}=25;c^2+\frac{b^2}{3}=9;a^2+ac+c^2=16\)và \(a\ne0;c\ne0;a\ne-c\).CMR: \(\frac{2c}{2}=\frac{b+c}{a+c}\)
Biết \(a^2+ab+\frac{b^2}{3}=25;c^2+\frac{b^2}{3}=9;a^2+ac+c^2=16.\)
và \(a\ne0,c\ne0,a\ne-c\)
CMR:\(\frac{2c}{a}=\frac{b+c}{a+c}\)
Biết :
a^2 + ab + b^2/3 = 25 ; c^2 + b^2/3 = 9 ; a^2 + ac + c^2 = 16 và a ; c khác 0 ; a khác -c
Chứng minh rằng : 2c/a =b +c / a+ c
cho 3 số dương 0<a<b<c<1 cmr:\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}< 2\)
cho bốn số a, b, c, d # 0 và thỏa mãn: b2=ac; c2=bd; b3+c3+d3 # 0. CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 1) a) Cho a,b,c khác 0 và a2 + bc
CMR: \(\frac{a^2+c^2}{b^2+d^2}\) = \(\frac{c}{b}\)
b) Cho a,b,c,d khác 0 bà b2 = ad, c2 = bd
CMR: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\frac{a}{d}\)
1/ Cho b2= ac. Chứng minh \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
2/ Cho \(\frac{a}{b}=\frac{b}{2c}=\frac{c}{4a}\) ( a,b,c \(\ne\) 0). Chứng minh b = c
* giúp e 2 bài này gấp mọi người ơi *
Cho các số a;b;c;d Khác 0 và thỏa mãn : b2=ac; c2=bd; b3+c3+d3 khác 0
CMR : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
bài 1: a) Cho a,b,c khác 0 và a2 = bc
CMR : \(\frac{a^2+c^2}{b^2+d^2}\) = \(\frac{c}{b}\)
b) Cho a,b,c,d khác 0 và b2 = ad , c2 = bd
CMR : \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\frac{a}{d}\)
Làm nhanh giúp mình nha mình đang cần gấp