Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Bình Nguyên

Biện luận theo a số nghiệm và viết biểu thức nghiệm của phương trình sau :

\(ax^3-\left(a+2\right)x^2+3x-1=0\)

Bùi Bích Phương
24 tháng 2 2016 lúc 10:37

\(ax^3-\left(a+2\right)x^2+3x-1=0\) (1)

\(ax^3-\left(a+2\right)x^2+3x-1=0\Leftrightarrow\left(x-1\right)\left(ax^2-2x+1\right)=0\)

\(\Leftrightarrow\begin{cases}x-1=0\\ax^2-2x+1=0\end{cases}\left(2\right);\left(3\right)\) 

Nhận xét rằng phương trình  \(x-1=0\) (2) luôn có nghiệm x = 1

Phương trình \(ax^2-2x+1=0\)    (3)  có nghiệm x=1 khi và chỉ khi a=1.

Khi đó x=1 là nghiệm kép của (3)

- Nếu a=0 thì (3) có nghiệm \(x=\frac{1}{2}\)

- Nếu \(a\ne0\) thì (3) là phương trình bậc hai có \(\Delta'=1-a\)

    + Nếu \(\Delta'<0\)

       hay a>1 thì ( 3) vô nghiệm

     + Nếu a<1, \(a\ne0\) thì \(\Delta'>0\)

       nên phương trình (3) có hai nghiệm  \(x_{1;2}=\frac{1\pm\sqrt{1-a}}{a}\)

Theo nhận xét trên thì hai nghiệm này cùng khác 1. Ta có kết luận

- Nếu \(a\ge1\)  thì (1)  có một nghiệm x=1 ( khi a=1 thì x = 1 là nghiệm bội ba)

- Nếu a = 0 thì (1) có hai nghiệm phân biệt \(x=1;x=\frac{1}{2}\)

- Nếu  a < 1, \(a\ne0\) thì (1) có ba nghiệm phân biệt

x = 1, \(x=\frac{1-\sqrt{1-a}}{a};x=\frac{1=\sqrt{1-a}}{a}\)

 


Các câu hỏi tương tự
Tâm Cao
Xem chi tiết
Min Suga
Xem chi tiết
Nguyễn Hoàng Long
Xem chi tiết
Ngô Thành Chung
Xem chi tiết
Min Suga
Xem chi tiết
Viêt Thanh Nguyễn Hoàn...
Xem chi tiết
ghdoes
Xem chi tiết
khoimzx
Xem chi tiết
Kinder
Xem chi tiết