Em thử nhé, ko chắc đâu
a) \(B=\frac{n^3+2n^2+2n+1}{n^3+2n^2+2n+1}-\frac{2n+2}{n^3+2n^2+2n+1}=1-\frac{2\left(n+1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=1-\frac{2}{n^2+n+1}=\frac{n^2+n-1}{n^2+n+1}\)
b) Đặt (n2+n-1 ; n2+n+1) = d
Thì \(\left\{{}\begin{matrix}n^2+n-1⋮d\\n^2+n+1⋮d\end{matrix}\right.\Rightarrow2⋮d\)
Dễ thấy d khác 2 vì n2+n-1 ; n2+n+1 luôn là số lẻ với mọi n thuộc Z.
Do đó d = 1 hay phân số rút gọn luôn tối giản
\(B=\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}=\frac{\left(n^3+n^2\right)+\left(n^2-1\right)}{\left(n^3+n^2\right)+\left(n^2+n\right)+\left(n+1\right)}=\frac{n^2\left(n+1\right)+\left(n+1\right)\left(n-1\right)}{n^2\left(n+1\right)+n\left(n+1\right)+\left(n+1\right)}=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=\frac{n^2+n-1}{n^2+n+1}\)
\(Gọi:d=\left(n^2+n+1,n^2+n-1\right)\Rightarrow n^2+n+1-\left(n^2+n-1\right)⋮d\Leftrightarrow n^2-n^2+n-n+1+1⋮d\Leftrightarrow2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)
\(n^2+n+1=n\left(n+1\right)+1\)n và n+1 là 2 so tự nhiên liên tiếp => có 1 so chan trong 2 so n và n+1 \(\Rightarrow n\left(n+1\right)chan\Rightarrow n\left(n+1\right)+14le\Rightarrow n^2+n+1\text{ }le\Rightarrow d\text{ }le\Rightarrow d=1\Rightarrow\forall n\in Z\text{ thì phân so rút gọn toi gian}\)
Lời giải:
a)
\(B=\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}=\frac{n^2(n+1)+(n^2-1)}{n^2(n+1)+n(n+1)+(n+1)}\)
\(=\frac{n^2(n+1)+(n-1)(n+1)}{(n+1)(n^2+n+1)}=\frac{(n+1)(n^2+n-1)}{(n+1)(n^2+n+1)}=\frac{n^2-n+1}{n^2+n+1}\)
b)
Gọi $d$ là ƯCLN của \((n^2-n+1,n^2+n+1)\)
\(\Rightarrow \left\{\begin{matrix} n^2-n+1\vdots d\\ n^2+n+1\vdots d\end{matrix}\right.(*)\) \(\Rightarrow (n^2+n+1)-(n^2-n+1)\vdots d\) hay $2n\vdots d(1)$
Mà $n^2-n+1=n(n-1)+1$ lẻ do $n(n-1)$ chẵn, mà ước của số lẻ thì phải lẻ nên $d$ lẻ (2)
Từ (1);(2) suy ra $n\vdots d(3)$
Từ $(*); (3)\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n^2-n+1,n^2+n+1)=1\Rightarrow B=\frac{n^2-n+1}{n^2+n+1}$ là phân số tối giản.