Giúp em đưa ra lời giải chi tiết và dễ hiểu với bài này:
Cho phương trình \(2x^2+2\left(m-1\right)x+m^2-1=0\). Tìm m để phương trình có hai nghiệm phân x1,x2 sao cho biểu thức \(P=\left(x_1-x_2\right)^2\) đạt giá trị lớn nhất.
Tìm m để PT có 2 nghiệm x1,x2 thỏa mãn
a,\(x^2-2x-m^2-2m=0\left(x1< 2< x2\right)\)
b, \(2x^2+\left(m-6\right)x-m^2-3m=0\left(1< x1< x2\right)\)
c, \(mx^2+\left(2m^2-m-1\right)x-2m+1=0\left(x1< x2< 5\right)\)
tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn
\(mx^2+\left(2m^2-m-1\right)x-2m+1=0\left(x1< x2< 5\right)\)
Câu 1:Tập hợp nghiệm của phương trình \(\dfrac{X^2-4x-2}{\sqrt{x-2}}=\sqrt{X-2}\)
Câu2: tìm tham số m để phương trình sau
vô nghiệm: \(\left\{{}\begin{matrix}mx+y+m=0\\x+my+m=0\end{matrix}\right.\)
1. Cho phương trình \(\left(x^2+\text{ax}+1\right)^2+a\left(x^2+\text{ax}+1\right)+1=0\) có nghiệm duy nhất. Chứng minh \(a>2\)
2. Cho a,b,c thỏa mãn \(a+2b+5c=0.Cmr:\) \(\text{ax}^2+bc+c=0\) có nghiệm
3. Giả sử phương trình \(\left(m+3\right)x^2+2\left(m+1\right)x+m=0\) có 2 nghiệm \(x_1,x_2\). Tìm a để \(F=\left(x_1-a\right)\left(x_2-a\right)\) không phụ thuộc vào m
ĐỊNH m để phương trình \(mx^{^{ }2}+2\left(m-4\right)x+m+8=0\)
cs hai nghiệm phân biệt x1,x2 sao cho 4x1-x2=1
cho phương trình \(\left(x^2-2x+m\right)^2-2x^2+3x-m=0\) . Tìm m để phương trình đã cho có 4 nghiệm
Giải và biện luận các phương trình sau theo tham số m :
a) \(\left|2x-5m\right|=2x-3m\)
b) \(\left|3x+4m\right|=\left|4x-7m\right|\)
c) \(\left(m+1\right)x^2+\left(2m-3\right)x+m+2=0\)
d) \(\dfrac{x^2-\left(m+1\right)x-\dfrac{21}{4}}{x-3}=2x+m\)