ta có :
\(-\sqrt{4}=-2\)
\(\sqrt{\left(-2\right)^2}=\sqrt{4}=2\)
Vì `2>-2`
Vậy \(-\sqrt{4}< \sqrt{\left(-2\right)^2}\)
ta có :
\(-\sqrt{4}=-2\)
\(\sqrt{\left(-2\right)^2}=\sqrt{4}=2\)
Vì `2>-2`
Vậy \(-\sqrt{4}< \sqrt{\left(-2\right)^2}\)
bài 1: tính
a) 3/4+(-5/2)+(-3/5)
b) \(\sqrt{\left(7\right)^2}+\sqrt{\dfrac{25}{16}-\dfrac{3}{2}}\)
c)\(\dfrac{1}{2}.\sqrt{100}-\sqrt{\dfrac{1}{16}+\left(\dfrac{1}{3}\right)^0}\)
tính \(\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(\sqrt{\left(\sqrt{3-\sqrt{4}}\right)^2}\)
\(\sqrt{\left(7-\sqrt{34}\right)^2}\) giúp mik nha
Thực hiện phép tính
\(M=\left(18\dfrac{1}{3}:\sqrt{225}+8\dfrac{2}{3}.\sqrt{\dfrac{49}{4}}\right):\left[\left(12\dfrac{1}{3}+8\dfrac{6}{7}\right)-\dfrac{\left(\sqrt{7}\right)^2}{\left(3\sqrt{2}\right)^2}\right]:\dfrac{1704}{445}\)
giúp mình với
1, tính
a, \(7\times\sqrt{\dfrac{6^2}{7^2}}-\sqrt{25}+\sqrt{\dfrac{\left(-3\right)^2}{2}}\)
b, \(-\sqrt{\dfrac{64}{49}}-\dfrac{3}{5}\times\sqrt{\dfrac{25}{64}}+\sqrt{0,25}\)
c, \(\sqrt{\dfrac{10000}{5}}-\dfrac{1}{4}.\sqrt{\dfrac{16}{9}}+\sqrt{\dfrac{\left(-3\right)^2}{\left(4\right)}}\)
d, \(\left|\dfrac{1}{4}-\sqrt{0,0144}\right|-\dfrac{3}{2}+\sqrt{\dfrac{81}{169}}\)
Tính
\(\left\{\left[\left(2\sqrt{2}\right)^2:2,4\right]\left[5,25:\left(\sqrt{7}\right)^2\right]\right\}:\left\{\left[2\dfrac{1}{7}:\dfrac{\left(\sqrt{5}\right)^2}{7}\right]\right\}:\left[2^2:\dfrac{\left(2\sqrt{2}\right)^2}{\sqrt{81}}\right]\)
Tính:
a) \(2\sqrt{a^2}\left(a\ge0\right)\)
b) \(\sqrt{3a^2}\left(a< 0\right)\)
c) \(5\sqrt{a^4}\left(a< 0\right)\)
d) \(\dfrac{1}{3}\sqrt{c^6}\left(c< 0\right)\)
\(\left(\sqrt{\dfrac{1}{4}-1,2}\right):1\dfrac{1}{20}-\left(-\dfrac{5}{2}\right)^2+\left|1,25-\dfrac{3}{4}\right|\)
1) Tính
a) \(\sqrt{225}\)
b) \(\sqrt{\left(\sqrt{3-1}\right)^2}\)
c) \(\sqrt{\left(1-\sqrt{7}\right)^2}\)
2) Tính
a) \(\sqrt{\left(a-1\right)^2}\) với a ≥ 1
b) \(\sqrt{\left(a+5\right)^2}\) với a ≤ -5
c) \(\sqrt{\left(9-a\right)^2}\)
\(\left(\frac{1}{2}\right)^2+\left(-\frac{3}{4}\right)-\frac{\sqrt{9}}{12}\)
Tính hợp lí
A=\(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)