\(a,\left|x\right|+\left|x+2\right|=0\)
Với mọi x thì \(\left|x\right|\ge0;\left|x+2\right|\ge0\)
=>\(\left|x\right|+\left|x+2\right|\ge0\) với mọi x
Để \(\left|x\right|+\left|x+2\right|=0thì\)
\(x=0vàx=-2\)
=>\(x\in\varnothing\)
Vậy......
\(b,\left|x\left(x^2-\dfrac{5}{4}\right)\right|=0\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2-\dfrac{5}{4}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\pm\dfrac{\sqrt{5}}{4}\end{matrix}\right.\)
Vậy..
\(a,\left|x\right|+\left|x+2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x\right|=0\\\left|x+2\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\left(-2\right)\end{matrix}\right.\)
Mà \(0\ne\left(-2\right)\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)