1: \(=\sqrt{20+2\cdot2\sqrt{5}+1}=2\sqrt{5}+1\)
2: \(=\sqrt{27-2\cdot3\sqrt{3}\cdot1+1}=3\sqrt{3}-1\)
3: \(=\sqrt{10-2\cdot\sqrt{10}\cdot\sqrt{5}+5}=\sqrt{10}-\sqrt{5}\)
4: \(=\sqrt{6-2\sqrt{5}}=\sqrt{5}-1\)
5: \(=\sqrt{7+2\sqrt{10}}=\sqrt{5}+\sqrt{2}\)
6: \(=\dfrac{\sqrt{16+2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{5}+1}{\sqrt{2}}=\dfrac{\sqrt{10}+\sqrt{2}}{2}\)
1: =√20+2⋅2√5+1=2√5+1=20+2⋅25+1=25+1
2: =√27−2⋅3√3⋅1+1=3√3−1=27−2⋅33⋅1+1=33−1
3: =√10−2⋅√10⋅√5+5=√10−√5=10−2⋅10⋅5+5=10−5
4: =√6−2√5=√5−1=6−25=5−1
5: =√7+2√10=√5+√2=7+210=5+2
6: