Bài 4: Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Thùy Linh

bai 2: cho tam giac ABC co goc A=90 do.Goi M la trung diem cua AC.tren tia BM lay diem N sao cho M la trung diem cua doan BN.CMR:a,CN vuong goc AC va CN=AB b,AN=BC va AN song song BC

bai 3:cho tam giac ABC co goc A=90 do va AB nho hon AC.tren canh AC lay diem D sao cho AD=AB.tren tia doi cua tia AB lay diem E sao cho AE=AC.CMR:a)DE song song BC b)DE vuong goc BC c)biet 4.B=5.C.tinh goc AED

Vũ Minh Tuấn
5 tháng 10 2019 lúc 17:54

Bài 2:

a) Xét 2 \(\Delta\) \(ABM\)\(CNM\) có:

\(AM=CM\) (vì M là trung điểm của \(AC\))

\(\widehat{AMB}=\widehat{CMN}\) (vì 2 góc đối đỉnh)

\(BM=NM\) (vì M là trung điểm của \(BN\))

=> \(\Delta ABM=\Delta CNM\left(c-g-c\right).\)

=> \(AB=CN\) (2 cạnh tương ứng)

=> \(\widehat{BAM}=\widehat{NCM}\) (2 góc tương ứng)

Ta có: \(\widehat{BAM}+\widehat{NCM}=180^0\) (vì 2 góc kề bù)

\(\widehat{BAM}=90^0\left(gt\right)\)

=> \(90^0+\widehat{NCM}=180^0\)

=> \(\widehat{NCM}=180^0-90^0\)

=> \(\widehat{NCM}=90^0.\)

=> \(\widehat{BAM}=\widehat{NCM}=90^0\)

=> \(CN\perp AB.\)

b) Xét 2 \(\Delta\) \(AMN\)\(CMB\) có:

\(AM=CM\) (như ở trên)

\(\widehat{AMN}=\widehat{CMB}\) (vì 2 góc đối đỉnh)

\(MN=MB\) (như ở trên)

=> \(\Delta AMN=\Delta CMB\left(c-g-c\right)\)

=> \(AN=BC\) (2 cạnh tương ứng)

=> \(\widehat{ANM}=\widehat{CBM}\) (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AN\) // \(BC.\)

Chúc bạn học tốt!

Lê Thu Dương
5 tháng 10 2019 lúc 17:55

Hỏi đáp Toán

Lê Thu Dương
5 tháng 10 2019 lúc 18:01

Bài 1 a) Hỏi đáp Toán

b)Hỏi đáp Toán

C)Hỏi đáp Toán


Các câu hỏi tương tự
doan thai duong
Xem chi tiết
doan thai duong
Xem chi tiết
An Binnu
Xem chi tiết
Kudo Shinichi
Xem chi tiết
An Binnu
Xem chi tiết
Hoàng Thùy Linh
Xem chi tiết
An Binnu
Xem chi tiết
ho dang khai
Xem chi tiết
nguyen thi khanh linh
Xem chi tiết