Lời giải:
Từ giả thiết đề bài suy ra $M$ là trung điểm của $BD$ và $N$ là trung điểm của $EC$
Xét tứ giác $ADCB$ có hai đường chéo $AC$ và $BD$ cắt nhau tại trung điểm $M$ nên $ADCB$ là hình bình hành:
\(\Rightarrow AD=BC(1)\)
Xét tứ giác $AEBC$ có hai đường chéo $AB$ và $CE$ cắt nhau tại trung điểm $N$ của mỗi đường nên $AEBC$ là hình bình hành
\(\Rightarrow AE=BC(2)\)
a) Từ (1),(2) suy ra \(AD=AE\)
b) Vì \(ADCB,AEBC\) là hình bình hành nên \(AE\parallel BC, AD\parallel BC\Rightarrow A,E,D\) thẳng hàng
Mà \(AE=AD\) (theo phần a) nên $A$ là trung điểm của $ED$
Do đó ta có đpcm.