Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Thị Mai Trang

Bài 1:Cho △ABC có 3 góc nhọn ,các đường cao BD,CE cắt nhau tại H

a) Chứng minh △ABD∼△ACE

b) Chứng minh BH.HD=CH.HE

c) Nối D với E,cho biết BC=a,AB=AC=b.Tính độ dài đoạn thảng DE theo a

Nguyễn Việt Hoàng
13 tháng 2 2020 lúc 21:46

Bạn tự vẽ hình nha

a, Xét \(\Delta ABD\) \(\Delta ACE\) có :

\(\widehat{A}\): chung

\(\widehat{ADB}=\widehat{AEC}=90^o\)

=> \(\Delta ABD\sim\Delta ACE\left(g.g\right)\)

b, Xét \(\Delta BHE\) \(\Delta CHD\) có :

\(\widehat{BHE}=\widehat{CHD}\left(dd\right)\)

\(\widehat{BEH}=\widehat{CDH}=90^o\)

=> \(\Delta BHE\sim\Delta CHD\left(g.g\right)\)

=> \(\frac{BH}{CH}=\frac{HE}{HD}\Rightarrow BH.HD=CH.HE\)

c, Khi AB = AC = b thì \(\Delta ABC\)cân tại A

=> DE song song với BC

=> \(\frac{DE}{BC}=\frac{AD}{AC}\Rightarrow DE=\frac{AD.BC}{AC}\)

Gọi giao điểm của AH và BC là F

=> \(AF\perp BC,FB=FC=\frac{a}{2}\)

\(\Delta DBC\sim\Delta FAC\left(g.g\right)\Rightarrow\frac{DC}{FC}=\frac{BC}{AC}\Rightarrow DC=\frac{BC.FC}{AC}=\frac{a^2}{2b}\)

=> \(DE=\frac{AD.BC}{AC}=\frac{\left(AC-DC\right)BC}{AC}=\frac{\left(b-\frac{a^2}{2b}\right)a}{b}=\frac{a\left(2b^2-a^2\right)}{2b^2}\)

Khách vãng lai đã xóa
Akai Haruma
13 tháng 2 2020 lúc 21:54

Lời giải:

a)

Xét tam giác $ABD$ và $ACE$ có:

$\widehat{A}$ chung

$\widehat{ADB}=\widehat{AEC}(=90^0)$

$\Rightarrow \triangle ABD\sim \triangle ACE(g.g)$

b)

Xét tam giác $EHB$ và $DHC$ có:

$\widehat{EHB}=\widehat{DHC}$ (đối đỉnh)

$\widehat{HEB}=\widehat{HDC}(=90^0)$

$\Rightarrow \triangle EHB\sim \triangle DHC$ (g.g)

$\Rightarrow \frac{EH}{HB}=\frac{DH}{HC}$

$\Rightarrow EH.HC=BH.CH$

c)

Áp dụng định lý Pitago cho tam giác vuông $ACE$ và $BCE$ có:

$AC^2-AE^2=CE^2=BC^2-BE^2=BC^2=(AB-AE)^2$

$\Leftrightarrow b^2-AE^2=a^2-(b-AE)^2$

$\Leftrightarrow AE=\frac{2b^2-a^2}{2b}$

Từ tam giác đồng dạng phần a suy ra\(\frac{AD}{AE}=\frac{AB}{AC}=1\Rightarrow AD=AE\)

Mà $AC=AB$ nên $\frac{AD}{AC}=\frac{AE}{AB}$. Theo định lý Ta-let đảo thì $DE\parallel BC$

$\Rightarrow \frac{ED}{BC}=\frac{AE}{AB}$

$\Rightarrow ED=\frac{AE.BC}{AB}=\frac{(2b^2-a^2).a}{2b.b}=\frac{2ab^2-a^3}{2b^2}$

Khách vãng lai đã xóa
Akai Haruma
13 tháng 2 2020 lúc 21:57

Hình vẽ:
Violympic toán 8

Khách vãng lai đã xóa
Akai Haruma
2 tháng 2 2020 lúc 20:04

Lời giải:

a)

Xét tam giác $ABD$ và $ACE$ có:

$\widehat{A}$ chung

$\widehat{ADB}=\widehat{AEC}(=90^0)$

$\Rightarrow \triangle ABD\sim \triangle ACE(g.g)$

b)

Xét tam giác $EHB$ và $DHC$ có:

$\widehat{EHB}=\widehat{DHC}$ (đối đỉnh)

$\widehat{HEB}=\widehat{HDC}(=90^0)$

$\Rightarrow \triangle EHB\sim \triangle DHC$ (g.g)

$\Rightarrow \frac{EH}{HB}=\frac{DH}{HC}$

$\Rightarrow EH.HC=BH.CH$

c)

Áp dụng định lý Pitago cho tam giác vuông $ACE$ và $BCE$ có:

$AC^2-AE^2=CE^2=BC^2-BE^2=BC^2=(AB-AE)^2$

$\Leftrightarrow b^2-AE^2=a^2-(b-AE)^2$

$\Leftrightarrow AE=\frac{2b^2-a^2}{2b}$

Từ tam giác đồng dạng phần a suy ra\(\frac{AD}{AE}=\frac{AB}{AC}=1\Rightarrow AD=AE\)

Mà $AC=AB$ nên $\frac{AD}{AC}=\frac{AE}{AB}$. Theo định lý Ta-let đảo thì $DE\parallel BC$

$\Rightarrow \frac{ED}{BC}=\frac{AE}{AB}$

$\Rightarrow ED=\frac{AE.BC}{AB}=\frac{(2b^2-a^2).a}{2b.b}=\frac{2ab^2-a^3}{2b^2}$

Khách vãng lai đã xóa

Các câu hỏi tương tự
Hoàng Thị Mai Trang
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Tiến Thanh
Xem chi tiết
Thuy Tran
Xem chi tiết
Nguyễn Tiến Thanh
Xem chi tiết
Hằng Nguyễn Thị Thúyl
Xem chi tiết
Hằng Nguyễn Thị Thúyl
Xem chi tiết
Mimi
Xem chi tiết
Gallavich
Xem chi tiết