\(BC=HB+HC=1+3=4\)
Áp dụng HTL ta có: \(BH.BC=AB^2\Rightarrow x=\sqrt{1.4}=2\)
Áp dụng HTL ta có: \(CH.BC=AC^2\Rightarrow y=\sqrt{3.4}=2\sqrt{3}\)
\(BC=HB+HC=1+3=4\)
Áp dụng HTL ta có: \(BH.BC=AB^2\Rightarrow x=\sqrt{1.4}=2\)
Áp dụng HTL ta có: \(CH.BC=AC^2\Rightarrow y=\sqrt{3.4}=2\sqrt{3}\)
Ôn tập:
1. Tìm x, y:
2. Cho \(\Delta\)DMN vuông tại M, biết \(\widehat{D}\)= 37\(^o\) và DN= 10cm. Giải tam giác vuông DMN?
3. Cho \(\Delta\)ABC \(\perp\) tại B, AB= 8cm, \(\widehat{A}\)= 53\(^o\). Giải \(\Delta\)ABC.
Cho △ABC vuông tại A, đường cao AH, biết AB= 4cm, BC= 6cm
a) Giải △ABC
b) Kẻ HD vuông AB và HE vuông AC. Chứng minh tứ giác ADHE là hình chữ nhật. Tính độ dài đường chéo hình chữ nhật này
c) Trên EC lấy điểm M. Kẻ AI vuông BM. Chứng minh các hệ thức BI . BM = BH . BC và BD . DA + CE . EA = AH\(^2\)
Cho \(\Delta ABC\) vuông tạ A có AB = 6 cm và BC = 12 cm
a. Tính độ dài cạnh AC và số đo các góc B, C
b. tia phân giác của góc B cắt cạnh AC tại D, giải tam giác vuông ABD
c. Từ D kẻ DE vuông góc BC (E thuộc BC). Không dùng số đo, chứng minh rằng \(\dfrac{S_{EDC}}{S_{ABC}}=tan^2\dfrac{B}{2}\)
Cho tam giác ABC vuông tại A, đường cao AH, AB=3cm, BC=6cm. 1) Giải tam giác ABC 2) Gọi E, F lần lượt là hình chiếu của H trên cạnh AB và AC. a) Tính độ dài AH và chứng minh: EF=AH b) Tính: EA.EB+AF.FC
bài 5 cho tam giác MNP vuông tại M có đường cao MH .Biết MN=10cm,MH=120/13cm.Tính độ dài các đoạn thẳng MP,NH và PH
bài 6 tam giác ABC vuông tại A ,đường cao AH ⊥ BC.Biết AB=6cm ,CH=6,4cm a, tính BH b, tính AC
Cho tam giác ABC vuông tại A, đường cao AH. Biết HC-HB=6, AB/AC=1/2. Tính độ dài các cạnh
Bài 1: Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm ; BC = 25 cm.
a) Tìm độ dài của BH; CH; AB và AC.
b) Vẽ trung tuyến AM. Tính AM
c) Tìm diện tích của rAHM.
Bài 2: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 12 cm; EF = 20. Tính DF; EH; FH.
Bài 3: Cho tam giác DEF vuông tại D, đường cao DH. Biết EH = 1 cm; FH = 4 cm. Tính EF; DE; DF.
Bài 4: BP 2017-2018
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH = 9cm.
a) Tính độ dài đường cao AH và ABC của tam giác ABC.
b) Vẽ đường trung tuyến AM, (M e BC) của tam giác ABC. Tính AM và diện tích của tam giác
Bài 5. Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 3 và 4 . Hãy tính các cạnh góc vuông của tam giác vuông này, đường trung tuyến ứng với cạnh huyền và diện tích tam giác ABC
Bài 6. (1.0 điểm)
Cho tam giác ABC vuông tại A, có AB = 15cm và AC = 20cm. Tính độ dài đường cao AH và trung tuyến AM của tam giác ABC.
Cho tam giác ABC vuông tại A có đường cao AH . Hãy tính độ dài các đoạn BC,AH,BH,CH , nếu biết :
1, AB =12 cm , AC= 9cm
2, AB = \(\sqrt{2}\) cm , AC = \(\sqrt{2}\) cm