\(linh_1=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=\dfrac{2^{20}}{2^{12}}=2^8=256\)
\(linh_2=10^3+5.10^2+5^3=\left(5.2\right)^3+5.\left(5.2\right)^2+5^3\)
\(=5^3.2^3+5.5^2.2^2+5^3=5^3.2^3+5^3.2^2+5^3\)
\(=5^3.8+5^3.4+5^3.1=5^3\left(8+4+1\right)=5^3.13=1625=\)