Bài 1:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2=x+y+z\)
+) \(\dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\)
\(\Rightarrow x+y+z+1=3x\)
\(\Rightarrow3=3x\Rightarrow x=1\)
+) \(\dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\)
\(\Rightarrow x+y+z+2=3y\Rightarrow y=\dfrac{4}{3}\)
+) \(\dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\)
\(\Rightarrow x+y+z-3=3z\)
\(\Rightarrow z=\dfrac{-1}{3}\)
Vậy...
Bài 2:
Giải:
Ta có: \(\dfrac{2+3x}{4}=\dfrac{1-5x}{2}\)
\(\Rightarrow4+6x=4-20x\)
\(\Rightarrow26x=0\Rightarrow x=0\)
\(\dfrac{1-5x}{2}=\dfrac{y+2x}{2y+3x}\)
\(\Rightarrow\dfrac{1}{2}=\dfrac{y}{2y}\)
\(\Rightarrow2y=2y\)
\(\Rightarrow y\in R\left(y\ne0\right)\)
Vậy....