Bài 1:
\(D=-4x^2-4x+3\)
\(=-\left(4x^2+4x+1\right)+4\)
\(=-\left(2x+1\right)^2+4\)
Với mọi giá trị của x ta có:
\(\left(2x+1\right)^2\ge0\Rightarrow-\left(2x+1\right)^2\le0\)
\(\Rightarrow-\left(2x+1\right)^2+4\le4\)
Vậy Max D = 4
Để D = 4 thì \(2x+1=0\Rightarrow x=-\dfrac{1}{2}\)
\(C=9x^2+6x+2=\left(9x^2+6x+1\right)+1\)
\(=\left(3x+1\right)^2+1\)
Với mọi giá trị của x ta có:
\(\left(3x+1\right)^2\ge0\Rightarrow\left(3x+1\right)^2+1\ge1\)
Vậy Min C = 1
Để C = 1 thì \(3x+1=0\Rightarrow x=-\dfrac{1}{3}\)
\(E=25x^2+16x+4\)
\(=25\left(x^2+\dfrac{16}{25}x+\dfrac{64}{625}\right)+\dfrac{36}{25}\)
\(=25\left(x+\dfrac{8}{25}\right)^2+\dfrac{36}{25}\)
Với mọi giá trị của x ta có:
\(25\left(x+\dfrac{8}{25}\right)^2\ge0\Rightarrow25\left(x+\dfrac{8}{25}\right)^2+\dfrac{36}{25}\ge\dfrac{36}{25}\)Vậy Min E = \(\dfrac{36}{25}\)
Để \(E=\dfrac{36}{25}\) thì \(x+\dfrac{8}{25}=0\Rightarrow x=-\dfrac{8}{25}\)
Sai thông cảm cho tớ nha~.~. Chúc bạn hc tốt ^.^