\(d.\dfrac{\sqrt{xy^2}.\sqrt{x^2-y^2}}{\sqrt{\left(x+y\right)\left(x^2y^3-xy^4\right)}}=\dfrac{\sqrt{xy^2}.\sqrt{\left(x-y\right)\left(x+y\right)}}{\sqrt{xy^2.y\left(x+y\right)\left(x-y\right)}}=\dfrac{1}{y}\left(x;y>0\right)\)
= \(\sqrt{\dfrac{xy^2\left(x+y\right)\left(x-y\right)}{xy^3\left(x+y\right)\left(x-y\right)}}\)
=\(\sqrt{\dfrac{xy^2}{xy^3}}\)
=\(\sqrt{\dfrac{1}{y}}\)