Bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=\dfrac{a-2b+3c-1+4-9}{2-2\cdot3+3\cdot4}=\dfrac{-20}{8}=\dfrac{-5}{2}\)
Do đó: a-1=-5; b-2=-15/2; c-3=-10
=>a=-4; b=-11/2; c=-7
Bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a-1}{2}=\dfrac{b-2}{3}=\dfrac{c-3}{4}=\dfrac{a-2b+3c-1+4-9}{2-2\cdot3+3\cdot4}=\dfrac{-20}{8}=\dfrac{-5}{2}\)
Do đó: a-1=-5; b-2=-15/2; c-3=-10
=>a=-4; b=-11/2; c=-7
Cho \(\dfrac{2.y.c-3.b.z}{x}=\dfrac{3.a.z-c.x}{2.y}=\dfrac{b.x-2.a.y}{3.z}\)
Chứng minh: \(\dfrac{a}{x}=\dfrac{b}{2.y}=\dfrac{c}{3.z}\)
cho tỉ lệ thức\(\dfrac{a}{b}=\dfrac{c}{d}\)
(a,b,c,d khác 0)
chứng tỏ rằng
bài 1 \(\dfrac{a}{a+c}=\dfrac{b}{b+d}\)
bài 2 \(\dfrac{2a+c}{3a-c}=\dfrac{2b+d}{3b-d}\)
bài 3\(\dfrac{5a-2c}{3a-4c}=\dfrac{5b-2d}{3b-4d}\)
nhanh nha gấp lắm ạ
e, \(\dfrac{x+5}{2}=\dfrac{y-2}{3}vàx-y=10\)
f, \(\dfrac{a+2}{3}=\dfrac{b-7}{5}vàa-b+c=-33\)
h,\(\dfrac{a-1}{2}=\dfrac{b+3}{4}=\dfrac{c-5}{6}và5a-3b-4c=500\)
Zúp mìk zới!
1. Tìm x, y biết:
a) \(\dfrac{x-1}{5}=\dfrac{y-2}{3}=\dfrac{z-2}{2}\) và x + 2y - z = 6
b) \(\dfrac{x}{y}=\dfrac{2}{3}\) và x2 + y2 = 52
2. Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh rằng:
a) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
b) \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
Câu 1: Cho các số \(0< a_1< a_2< a_3< ...< a_{15}\). Chững minh rằng \(\dfrac{a_1+a_2+a_3+...+a_{15}}{a_5+a_{10}+a_{15}}< 5\)
Câu 2: Tìm x và y biết: \(\dfrac{1+5y}{24}=\dfrac{1+7y}{7x}=\dfrac{1+9y}{2x}\)
Câu 3: Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính M = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
Câu 4: Cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\). Chứng minh: \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)
Câu 5: Cho 4 số a, b, c, d đều ≠ 0 thoả mãn \(b^2=ac\), \(c^2=bd\), \(b^3+27c^3+8d^3\) ≠ 0. Chứng minh rằng: \(\dfrac{a}{d}=\dfrac{a^3+27b^3+8c^3}{b^3+27c^3+8d^3}\)
Câu 6: Cho \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\). Tính giá trị của biểu thức A = \(2016x+y^{2017}+x^{2017}\)
Câu 7: Tìm giá trị nhỏ nhất của biểu thức A biết: \(A=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+zy+zx-2000\right|\)
Câu 8: Tìm 3 số a, b, c biết: \(\dfrac{3a-2b}{4}=\dfrac{2c-4a}{3}=\dfrac{4b-3c}{2}\) và \(a+b+c=18\).
Bài 1:
1) Tìm x,y,z biết: 3.(x-1)=2.(y-2) ; 5.(y-2)=4.(z-3) và 2.x+3.y-z=79
2) Cho 3 số thực a,b,c khác 0,a+b+c khác 0. Thỏa mãn:
\(\dfrac{3a+b+c}{a}=\dfrac{a+3b+c}{b}=\dfrac{a+b+3c}{c}\)
Tính giá trị M = \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
Giúp mình với mình đang cần gấp! Thanks!
Bài 2: Tìm a,b,c:
a) \(\dfrac{a}{3}\)=\(\dfrac{b}{5}\)=\(\dfrac{c}{6}\); x.y.z=720
b)\(\dfrac{a}{5}\)=\(\dfrac{b}{7}\); a.b=140
1. tìm x, biết: \(x=\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{a+b+d}=\dfrac{d}{a+b+c}\)
2. tìm x,y,z biết: \(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+2}=\dfrac{z}{x+y-3}=x+y+z\)
làm ơn giúp mk
Câu 1: Cho \(\dfrac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}=\dfrac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\). Chứng minh: \(\dfrac{a}{b}=+-\dfrac{c}{d}\)
Câu 2: Cho dãy tỉ số bằng nhau: \(\dfrac{2a+b+c+d}{a}=\dfrac{a+2b+c+d}{b}=\dfrac{a+b+2c+d}{c}=\dfrac{a+b+c+2d}{d}\). Tính giá trị biểu thức: M = \(\dfrac{a+b}{c+d}+\dfrac{b+c}{d+a}+\dfrac{c+d}{a+b}+\dfrac{d+a}{b+c}\)
Câu 3: Tìm x, y ϵ N biết: \(25-y^2=8\left(x-2009\right)^2\)
Câu 4: Tìm x biết: \(\left|x^2+\left|6x-2\right|\right|=x^2+4\)
Câu 5: Tìm các số nguyên thoả mãn: \(x-y+2xy=7\)
Câu 6: Cho \(a>2,b>2\). Chứng minh: \(ab>a+b\)