B1:
a)
\(H=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{x-\sqrt{x}}\\ H=\dfrac{\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ H=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\\H=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b)
\(H< 0\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}}< 0\)
vì \(\sqrt{x}\ge0\)
nên \(\sqrt{x}-1< 0\\ \sqrt{x}< 1\Rightarrow x< 1\)
vậy khi x<1 thì H < 0
b)
1.
\(Q=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}+1\right):\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-1\right)\\ Q=\left(\dfrac{x+\sqrt{x}+\sqrt{x}+1}{\sqrt{x}+1}\right):\left(\dfrac{x-\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\right)\\ Q=\left[\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\right]:\left[\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\right]\\ Q=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)=x-1\)
2.
\(Q< 1\Leftrightarrow x-1< 1\Leftrightarrow x< 2\)
vậy khi x< 2 thì Q<1