Bài 1:
1.1
a) Ta có: \(A=\left(x+y\right)\left(x-y\right)+x\left(2x-1\right)+y\left(y+1\right)\)
\(=x^2-y^2+2x^2-x+y^2+y\)
\(=3x^2-x+y\)
b) Thay x=1 và y=2018 vào biểu thức \(A=3x^2-x+y\), ta được:
\(A=3\cdot1^2-1+2018\)
\(=2+2018=2020\)
Vậy: Khi x=1 và y=2018 thì A=2020
1.2
a) Ta có: \(2x^2\left(x^2-3x+1\right)\)
\(=2x^2\cdot x^2-2x^2\cdot3x+2x^2\cdot1\)
\(=2x^4-6x^3+2x^2\)
b) Ta có: \(\left(2x-1\right)\left(6x^2+3x-3\right)\)
\(=2x\cdot6x^2+2x\cdot3x-2x\cdot3-6x^2-3x+3\)
\(=12x^3+6x^2-6x-6x^2-3x+3\)
\(=12x^3-9x+3\)
1.3
a) Ta có: \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
b) Ta có: \(x^2-xy-8x+8y\)
\(=x\left(x-y\right)-8\left(x-y\right)\)
\(=\left(x-y\right)\left(x-8\right)\)
1.1
a) A= (x+y).(x-y) + x(2x-1) + y(y+1)
= x2- x.y + x.y - y2 + 2x2 - x +y2 + y = 3x2 - x + y
b) Ta có A= 3x2 - x + y; thay x=1,y=2018 vào biểu thức:
A= 3.12 - 1+ 2018 = 2020
1.3
a)x3 - 2x2 + x = x.( x2 - 2x + 1) = x.(x-1)2
b) x2 - xy - 8x + 8y = x.(x - y) - 8.(x - y)= (x - y).(x-8).
Xin lỗi nha, tớ không biết làm bài 1.2.
Chúc bạn học tốt!!