Ta có: A=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+....+\dfrac{1}{2013.2015}\)
\(\Leftrightarrow2A=2\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2013.2015}\right)\)
\(\Leftrightarrow2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2013}+\dfrac{1}{2013}-\dfrac{1}{2015}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{2015}=\dfrac{2012}{6045}\)
\(\Leftrightarrow A=\dfrac{1006}{6045}\)
2A=\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{1}{2013.2015}\)
2A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}+\dfrac{1}{2015}\)
2A=\(\dfrac{1}{1}-\dfrac{1}{2015}\)
2A=\(\dfrac{2014}{2015}\)
A=\(\dfrac{1007}{2015}\)
Khi gặp bài này, bn nên tách 1 phân số ra thành hiệu của 2 phân số.
Giải:
A=1/1.3+1/3.5+1/5.7+...+1/2013.2015
A=1/2.(2/1.3+2/3.5+2/5.7+...+2/2013.2015)
A=1/2.(1/1-1/3+1/3-1/5+1/5-1/7+...+1/2013-1/2015)
A=1/2.(1/1-1/2015)
A=1/2.2014/2015
A=1007/2015
Chúc bạn học tốt!
2A=2/1.3 + 2/3.5 + 2/5.7+....+2/2013.2015
2A=1-1/3+1/3-1/5+1/5-1/7+......+1/2013+1/2015
=1-1/2015
=>2A=1-1/2015
=>2A=2014/2015
=>A=2014/2015 :2=2014/2015.1/2
=>A=2014/4030=1007/2015
Vậy A=1007/2015
Bạn cho mình sửa lại bài khi nãy nhé:
Ta có: \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2013.2015}\)
\(\Rightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+..+\dfrac{2}{2013.2015}\)
\(\Leftrightarrow2A=\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\)
\(\Leftrightarrow2A=\dfrac{1}{1}-\dfrac{1}{2015}=\dfrac{2014}{2015}\)
\(\Rightarrow A=\dfrac{1007}{2015}\)
Nãy mình sai chỗ mà rút gọn ấy, nhìn nhầm:vv tưởng là bắt đầu từ \(\dfrac{1}{3}\) cơ:vv
Ta có: \(A=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2013\cdot2015}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2013\cdot2015}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}\)
\(=\dfrac{1007}{2015}\)