Lời giải:
a) Sử dụng biến đổi tương đương:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow a+b+2\sqrt{ab}\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng với mọi \(a,b\geq 0\) )
Do đó ta có đpcm. Dấu "=" xảy ra khi \(ab=0\Rightarrow \left[\begin{matrix} a=0\\ b=0\end{matrix}\right.\)
b)
Áp dụng BĐT phần a:
\(2012\sqrt{x-99}+2012\sqrt{105-x}=2012(\sqrt{x-99}+\sqrt{105-x})\geq 2012\sqrt{x-99+105-x}=2012\sqrt{6}\)
\(\sqrt{105-x}\geq 0\)
\(\Rightarrow 2012\sqrt{x-99}+2013\sqrt{105-x}\geq 2012\sqrt{6}+0=2012\sqrt{6}\)
Mà \(2012\sqrt{x-99}+2013\sqrt{105-x}\leq 2012\sqrt{6}\) (theo giả thiết)
Suy ra \(2012\sqrt{x-99}+2013\sqrt{105-x}=2012\sqrt{6}\)
Dấu "=" xảy ra khi \(105-x=0\Rightarrow x=105\)
Vậy BPT có nghiệm $x=105$