Bài 5: Lũy thừa của một số hữu tỉ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
linh khanh

a,\(Cho\dfrac{a}{b}=\dfrac{c}{d}CMR,\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{a^3+b^3}{c^3+d^3}\)

Huy Thắng Nguyễn
6 tháng 9 2017 lúc 13:07

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

\(\Rightarrow\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}\)(1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+b^3}{c^3+d^3}\)(2)

Từ (1) và (2) \(\Rightarrow\) đpcm

Sakura Nguyen
6 tháng 9 2017 lúc 13:14

Theo đề đã cho, ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\left(\dfrac{a+b}{c+d}\right)^3=\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}\)(1)
\(\Rightarrow\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+b^3}{c^3+d^3}\)(2)
Từ (1) và (2)\(\Rightarrow\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{a^3+b^3}{c^3+d^3}\)(đpcm)

 Mashiro Shiina
6 tháng 9 2017 lúc 13:35

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{\left(a+b\right)^3}{\left(c+d\right)^3}=\dfrac{\left(bk+b\right)^3}{\left(dk+d\right)^3}=\dfrac{\left[b\left(k+1\right)\right]^3}{\left[d\left(k+1\right)\right]^3}=\dfrac{b^3}{d^3}\\\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{bk^3+b^3}{dk^3+d^3}=\dfrac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\dfrac{b^3}{d^3}\end{matrix}\right.\)

Vậy


Các câu hỏi tương tự
lê khánh chi
Xem chi tiết
Nguyễn Phúc Nguyên
Xem chi tiết
thùy phạm
Xem chi tiết
ngọc linh dương
Xem chi tiết
Nguyễn Minh Tuấn
Xem chi tiết
#Mon
Xem chi tiết
Mai Ngọc Trâm
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Hoàng Thảo Nhi
Xem chi tiết