a) Ta có: x : y : z = 2 : 3 : 5
⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Giả sử: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
⇒ x = 2k ; y = 3k ; z = 5k
Ta có: xyz = 810
⇒ 2k . 3k . 5k = 810
30 . k3 = 810
k3 = 810 : 30
k3 = 27
⇒ k = 3
⇒ k = 3 ⇒ x = 2 . 3 = 6
y = 3 . 3 = 9
z = 5 . 3 = 15
Vậy x = 6 ; y = 9 ; z = 15
b) Ta có: \(\dfrac{x^3}{8}=\dfrac{y^3}{27}=\dfrac{z^3}{64}\)
⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) ⇒ \(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{3z^2}{48}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{3z^2}{48}=\dfrac{x^2+2y^2-3z^2}{4+18-48}\)
\(=\dfrac{-650}{-26}=25\)
+) \(\dfrac{x}{2}=25\) ⇒ x = 50
\(\dfrac{y}{3}=25\) ⇒ y = 75
\(\dfrac{z}{4}=25\) ⇒ z = 100
Vậy x = 50 ; y = 75 ; z = 100