\(A=\frac{\left(\sqrt{b}+\sqrt{c}\right)\left(b-\sqrt{bc}+c\right)}{\sqrt{bc}\left(\sqrt{b}+\sqrt{c}\right)}=\frac{b-\sqrt{bc}+c}{\sqrt{bc}}=\frac{\sqrt{b}}{\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{b}}-1\)
\(A=\frac{\left(\sqrt{b}+\sqrt{c}\right)\left(b-\sqrt{bc}+c\right)}{\sqrt{bc}\left(\sqrt{b}+\sqrt{c}\right)}=\frac{b-\sqrt{bc}+c}{\sqrt{bc}}=\frac{\sqrt{b}}{\sqrt{c}}+\frac{\sqrt{c}}{\sqrt{b}}-1\)
cho a, b, c >0 tm \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=6\)
CMR \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\ge3\)
cho a,b,c >0 chứng minh rằng
\(\sqrt{\dfrac{a+b}{c}}+\sqrt{\dfrac{b+c}{a}}+\sqrt{\dfrac{c+a}{b}}>=2\left(\sqrt{\dfrac{c}{a+b}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{a}{b+c}}\right)\)
Chứng minh rằng:
\(\sqrt{c.\left(a-c\right)}+\sqrt{c.\left(b-c\right)}\le\sqrt{ab}\) với a>0, b>0, c>0
1 Rút gọn:
a) A=\(\frac{\sqrt[]{2+\sqrt[]{3}}}{4}+\sqrt[]{\frac{2-\sqrt[]{3}}{16}}+\frac{1}{\sqrt[]{3}+\sqrt[]{2}+1}\)
b)\(\left(\sqrt[]{a+\sqrt[]{a^2-8}}\right).\left(\sqrt[]{a-2\sqrt[]{2}}-\sqrt[]{a+2\sqrt[]{2}}\right),a>=2\sqrt[]{2}\)
2.Cho x= \(\sqrt[]{2-\sqrt[]{3}}.\left(\sqrt[]{6}+\sqrt[]{2}\right)-\frac{2\sqrt[]{6}+\sqrt[]{3}}{\sqrt[]{8}+1}\). Tính A= \(x^5-3x^4-3x^3+6x^2-20x+2022\)
3. Cho a,b,c >0, \(\frac{a}{a+b}=\frac{b}{c+a}=\frac{c}{a+b}\). CMR: \(\frac{\left(a+b\right)^3}{c^3}+\frac{\left(b+c\right)^3}{a^3}+\frac{\left(a+c\right)^3}{b^3}+24\)
a,b,c >0 thỏa mãn b≠c ,\(\sqrt{a}\)+\(\sqrt{b}\)≠\(\sqrt{c}\) và a+b=\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2.cmr\)
\(\dfrac{a+(\sqrt{a}-\sqrt{c})^2}{b+\left(\sqrt{b}-\sqrt{c}\right)}\)=\(\dfrac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\)
cho a,b,c>0 thỏa mãn a+b+c=1.
tính P=\(\sqrt{\frac{\left(a+bc\right)\left(b+ca\right)}{c+ab}}+\sqrt{\frac{\left(c+ab\right)\left(b+ca\right)}{a+bc}}+\sqrt{\frac{\left(a+bc\right)\left(c+ab\right)}{b+ca}}\)
BÀI 1: Rút gọn các biểu thức sau:
1)\(\left(\frac{2}{\sqrt{3}-1}+\frac{3}{\sqrt{3}-2}+\frac{15}{3-\sqrt{3}}\right).\frac{1}{\sqrt{3}+5}\)
2)\(4\sqrt{\frac{25x}{4}}-\frac{8}{3}\sqrt{\frac{9x}{4}}-\frac{4}{3x}\sqrt{\frac{9x^3}{64}}\) với x > 0
BÀI 2: Giải các phương trình sau:
\(\sqrt{x^2-x+\frac{1}{4}}=2x-1\)
BÀI 3:
a) Tính giá trị biểu thức A = \(\frac{x-4}{\sqrt{x}+3}\) với x = 5
b) Rút gọn biểu thức B= \(\frac{\sqrt{x}-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}+2}\) với điều kiện x > 0
c) Biết C= A.B. So sánh C với 1.
BÀI 4: Giải phương trình \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x+2\sqrt{x-1}}=-2\)
bài 1. Cho a = 2; b = 8; c = \(\sqrt{5}\) - 2
a) Tính M \(\sqrt{a}.\sqrt{b}\)
b) Tính N \(\sqrt{c^2}-\dfrac{1}{c}\)
c) Tìm x biết rằng \(2x^2+c\left(2c-\sqrt{a}\right)-c\sqrt{2}=0\)
bài 1 : cho biểu thức
A = \(\left(\frac{\sqrt{x}}{\sqrt{x-1}}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right)\)
a, tìm điều kiện xác định của x để biểu thức A có nghĩa
b, Rút gọn biểu thức A
c, tính các giá trị cửa x để A>0
bài 2 giải phương trình
a, \(\sqrt{2}.x^2-\sqrt{98}=0\)
bài 3 cho biểu thức
A= \(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+1\left(x>0\right)\)
a, rút gọn biểu thức A
b, tìm x để A =2
Giúp mình với tối mai đi hc rồi