Ôn tập chương 1: Căn bậc hai. Căn bậc ba

Vũ Tiền Châu

cho a,b,c >0 chứng minh rằng

\(\sqrt{\dfrac{a+b}{c}}+\sqrt{\dfrac{b+c}{a}}+\sqrt{\dfrac{c+a}{b}}>=2\left(\sqrt{\dfrac{c}{a+b}}+\sqrt{\dfrac{b}{a+c}}+\sqrt{\dfrac{a}{b+c}}\right)\)

Akai Haruma
31 tháng 8 2017 lúc 16:12

Lời giải:

Đặt \(\left ( \sqrt{\frac{a}{b+c}},\sqrt{\frac{b}{a+c}},\sqrt{\frac{c}{a+b}} \right )=(x,y,z)\)

\(\Rightarrow \left\{\begin{matrix} x^2=\frac{a}{b+c}\\ y^2=\frac{b}{a+c}\\ z^2=\frac{c}{a+b}\end{matrix}\right.\Rightarrow \frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}=2\)

\(\Leftrightarrow (1-\frac{1}{x^2+1})+(1-\frac{1}{y^2+1})+(1-\frac{1}{z^2+1})=1\)

\(\Leftrightarrow \frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}=1\)

BĐT cần chứng minh tương đương:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 2(x+y+z)(\star)\)

Áp dụng BĐT Bunhiacopxky:

\(\left ( \frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1} \right )(x^2+1+y^2+1+z^2+1)\geq (x+y+z)^2\)

\(\Leftrightarrow x^2+1+y^2+1+z^2+1\geq (x+y+z)^2\)

\(\Leftrightarrow xy+yz+xz\leq \frac{3}{2}\)

Kết hợp với hệ quả của BĐT AM-GM :

\((xy+yz+xz)^2\geq 3xyz(x+y+z)\)

\(\Rightarrow xy+yz+xz\geq \frac{3xyz(x+y+z)}{xy+yz+xz}\geq \frac{3xyz(x+y+z)}{\frac{3}2{}}=2xyz(x+y+z)\)

\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{2xyz(x+y+z)}{xyz}=2(x+y+z)\)

Do đó BĐT \((\star)\) được chứng minh.

Bài toán hoàn thành. Dấu bằng xảy ra khi \(a=b=c\)

Bình luận (0)

Các câu hỏi tương tự
Vũ Tiền Châu
Xem chi tiết
TTTT
Xem chi tiết
Đông Viên
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Aocuoi Huongngoc Lan
Xem chi tiết
Vũ Tiền Châu
Xem chi tiết
Trần Thị Thùy Dương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Phan gia kiệt
Xem chi tiết