Cho các số thực a,b,c ,d,e \(\ne\) 0 thỏa mãn : \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)
CMR : \(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)\(=\dfrac{a}{e}\)
a) Cho a,b,c,d >0 và dãy tỉ số :\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính :P=\(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
b)Tìm giá trị nguyên dương của x và y sao cho:\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
hộ tui vs các chế
Cho \(\dfrac{a}{b} = \dfrac{c}{d}\) . Chứng minh :
a, \((a+c).((b-d)=(a-c).(b-d)\)
b, \((a+c).b=(b+d).a\)
c, \(a.(b-d)=b(a-c)\)
d, \((b+d).c=(a+c).d\)
e, \((b-d).c=(a-c).d\)
f, \((a+b).(c-d)=(a-b).(c+d)\)
g, \((2a+3c).(2b-3d)=(2a-3c).(2b+3d)\)
h, \((4a+3b).(4c-3d)=(4a-3b).((4c+3d)\)
i, \((2a+3b).(4c-5d)=(4a-5b).(2c+3d)\)
k, \((4a+5b).(7c-11d)=(7a-11b).(4c+5d)\)
Cho các số dương a,b,c,d thỏa mãn các điều kiện a2+c2=1 và \(\dfrac{a^4}{b}+\dfrac{c^4}{d}=\dfrac{1}{b+d}\).
Chứng minh rằng: \(\dfrac{a^{2014}}{b^{1007}}+\dfrac{c^{2014}}{d^{1007}}=\dfrac{2}{\left(b+d\right)^{1007}}\)
Các số a, b, c, d thỏa mãn điều kiện: \(\dfrac{a}{3b}=\dfrac{b}{3c}=\dfrac{c}{3d}=\dfrac{d}{3a}\)và a + b + c + d \(\ne0.\) Chứng minh rằng a = b = c = d
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh :
a, \(\dfrac{a^3+b^3}{c^3+d^3} = \dfrac{a^3-b^3}{c^3-d^3}\)
b, \(\dfrac{(a+b)^3}{(c+d)^3}=\dfrac{a^3+b^3}{c^3+d^3}\)
c, \(\dfrac{(a-b)^3}{(c-d)^3}=\dfrac{3a^2+2b^2}{3c^2+2d^2}\)
d, \(\dfrac{4a^4+5b^4}{4c^4+5d^4}=\dfrac{a^2b^2}{c^2d^2}\)
e, \(\dfrac{a^{10}+b^{10}}{(a+b)^{10}} = \dfrac{c^{10}+d^{10}}{(c+d)^{10}}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng
a) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+4c}{b+4d}\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a+2c}{3b+2d}\)
c) \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-2b}{c-2d}\)
d) \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a-2b}{5c-2d}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR\)
a, \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
b, \(\dfrac{c}{a+c}=\dfrac{b}{b+d}\)
c, \(\dfrac{a+b}{a}=\dfrac{d}{c+d}\)
d, \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
e, \(\dfrac{4a-3b}{a}=\dfrac{4c-3d}{c}\)
f, \(\dfrac{a^2+b^2}{a^2-b^2}=\dfrac{c^2+d^2}{c^2-d^2}\)
các bạn bạn nào làm đc ý nào thì làm giúp đỡ mình một tí :
a/ cho các số thực a,b,c,d,e khác 0 thỏa mãn a/b =b/c =c/d =d/e
cm rằng 2a^2+3b^4+4c^4+5d^4/2b^2+3c^4+4d^4+5e^4 =a/e
b/ cho a,b,c,d là các số thực dương thỏa mãn a/b <c/d
háy so sánh a/b với a+c/b+d
c/ cho các số nguyên dương a,b,c,d thỏa mãn a=b=c=2016
cm biểu thức sau ko phải là 1 số nguyên
A=a/2016−c +b/2016−a +c/2016−b
thank các bạn nhiều
bạn nào làm đc mình tích cho nhé